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Abstract 

Recently, generative adversarial imitation learning (GAIL) 
have shown remarkable possibilities for solving practical 
Markov decision process problems. However, they lack the 
capability to manage low-level, and high-dimensional state 
input, such as image sequences. Furthermore, the reward 
function learned in the traditional GAIL only lies in a posi-
tive range, acting as a non-penalized reward and making the 
agent difficult to learn the optimal policy. In this paper, we 
propose a new algorithm based on the GAIL that can stably 
learn from image sequence input. Our method proposes a 
new component called global encoder to solve two issues 
that arise when applying GAIL to high-dimensional image 
state. Also, it has the penalization mechanism which pro-
vides more adequate reward to the agent, resulting in stable 
performance improvement. The potential of our approach 
can be backed up by the fact that it is generally applicable to 
variants of GAIL. We conducted in-depth experiments by 
applying our methods to various variants of the GAIL. The 
results proved that our method significantly improves the 
performances when it comes to image sequence state input 
game. For a given game, only the proposed method reached 
the optimal solution. 

Introduction 

Many games can be represented as Markov decision pro-

cess (MDP). In addition, advances in storage device have 

made it possible to store expert trajectory data on games. 

In this context, imitation learning (IL), a method that can 

directly imitate expert behavior, has attracted much atten-

tion as a method for efficient reinforcement learning (RL) 

agent. Among them, generative adversarial imitation learn-

ing (GAIL) approach is showing tremendous performance 

over traditional IL approaches (Ho and Ermon, 2016). It 

was also verified that GAIL works well on high-

dimensional tasks consisting of 376 sensor information. 

Moreover, various follow-up studies have been proposed to 

construct a hierarchical policy and enhance the balance of 

learning (Li et al., 2017; Sharma et al, 2018; Peng et al. 

2018). 

 

However, real-world problems and games often provide 

only low-level and high-dimensional state inputs such as 

image sequences. For example, an autonomous driving car 

task (Sallab et al., 2017) and a video game such as Atari 

(Mnih et al. 2015, Hessel et al. 2018) or Minecraft (Oh et 

al., 2016) comes with a raw image sequence an input. Un-

like the sensor input where one element contains one in-

formation, it is more difficult to extract features from the 

image sequence input because several pixels are gathered 

to form one information. And, the image sequence input 

itself consists of over the thousands of dimensions. 

When dealing with image sequence input in the GAIL, 

the issue can arise where state dimensions dominate action 

dimensions. The discriminator of the GAIL is a multi-

modal model that receives state-action pairs as input. Ac-

cording to multi-modal studies, differences in input dimen-

sions lead to imbalance of importance (Atrey et al. 2010). 

In order to solve this issue, a method of configuring an 

additional encoder for state input in the discriminator is 

mainly used (Atrey et al. 2010). But, in the GAIL, there is 

also a balancing issue between RL agent and discriminator, 

since learning in the adversarial learning setting is inher-

ently unstable (Goodfellow et al., 2015). In the above case, 

the learning instability can be aggravated because each 

network looks at the state from different perspectives by 

encoding the state with respective encoder. 

In this paper, we propose a novel extension model of 

GAIL that can solve image sequence input issues. The pro-

posed model has a global encoder structure in which the 

RL agent and discriminator share the encoder of state. This 

improves robustness by inducing two components to give 

the same perspective on the state. At the same time, the 

problem of dimension imbalance between state-action pairs 

in the discriminator is also alleviated. We also propose a 

simple but powerful reward shaping mechanism in GAIL. 
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All rewards earned through the existing GAIL are positive. 

According to (Sutton and Barto, 1998), this reward func-

tion makes it difficult for the agent to reach optimal policy. 

The proposed reward shaping mechanism, reward penali-

zation, adjusts the range of rewards to include negative 

numbers, providing agents with more useful rewards. The 

proposed approach can be used generally for the GAIL 

framework because it maintains adversarial learning be-

tween RL agent and discriminator, which is the basic prin-

ciple of GAIL. We call this extension model as VIGAIL, 

video input generative adversarial imitation learning. Fi-

nally, we prove the usefulness of the proposed method in 

comparison with the variants of GAIL in game that use 

RGB image sequences as input. 

Background 

Imitation Learning 

Although reinforcement learning can solve MDP prob-

lems, there are lots of cases that the reinforcement signal 𝑟, 

which is necessary to run reinforcement learning, is not 

provided. For this cases, imitation learning tries to yield 

best policy for the task by using provided expert trajecto-

ries. There are two main approaches of IL. The first is be-

havioral cloning (BC), which tries to yield a best policy by 

adopting supervised learning over the expert state-action 

pairs (Pomerleau, 1991). The second is inverse reinforce-

ment learning (IRL). It tries to find optimal cost function 𝑐 

which derives best reward schemes that can explain the 

given expert trajectories (Andrew and Russell, 2000; 

Ziebart et al, 2008; Ziebart et al, 2010). Equation 1 shows 

typical object function of IRL for state 𝑠 and action 𝑎. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑐∈∁(𝑚𝑖𝑛𝜋∈Π − 𝐻(𝜋) + 𝑬𝜋[𝑐(𝑠, 𝑎)])

− 𝔼𝜋𝐸
[𝑐(𝑠, 𝑎)] 

(1) 

Where 𝐻(𝜋) ≡ 𝐸𝜋[− log 𝜋(𝑎|𝑠)] denotes the 𝛾-discounted 

entropy of the policy 𝜋, and 𝜋𝐸 denotes the expert policy 

that is given as sampled trajectories in practice. 

Generative Adversarial Imitation Learning 

Conventional IRL approaches require additional RL 

step over the reward scheme derived from the IRL to get 

the best policy for the given task. However, inspired by 

GAN, GAIL derive the best policy directly from given 

expert trajectories (Ho et al. 2016). The formal GAIL 

objective is following: 

𝑚𝑖𝑛𝜋𝑚𝑎𝑥𝐷𝑠~𝑆,𝑎~𝐴∈(0,1)𝔼𝜋[log 𝐷(𝑠, 𝑎)]

+ 𝔼𝜋𝐸
[log(1 − 𝐷(𝑠, 𝑎))] 

(2) 

Where 𝐷 denotes the discriminator, which tries to distin-

guish state-action pairs from the trajectories generated by 𝜋 

or 𝜋𝐸. Theoretically, it is proved that optimizing equation 1 

includes both IRL and RL step. 

Variants of Generative Adversarial Imitation Learning 

Variational adversarial imitation learning (VAIL) is a 

method of adjusting the balance between generator and 

discriminator by giving a constraint to the discriminator 

using a variational encoder called a variational discrimi-

native bottleneck (VDB). This method adds a term to the 

object function that maximizes the mutual information 

 
Figure 1. Schematic diagrams of GAIL, VAIL, DI-GAIL and VIGAIL  



between E(z|x)  and 𝑟(z)  so that the discriminator can 

produce a significant reward. 

Directed-info GAIL (DI-GAIL) is a model that agent 

can learn hierarchical policy without knowledge of op-

tion, meaning macro action. In order to learn option, 

they use directed information (Kramer, 1998) as a meas-

ure to map option to latent variable 𝑐. Therefore, they 

add a term that maximizes the directed information be-

tween c and trajectory 𝜏 = (𝑠1, 𝑎1, 𝑠2, 𝑎2, … 𝑠𝑡−1) In or-

der to approximate the distribution of c necessary for the 

use of the objective function, the approximate function 𝑞 

is trained by the pre-training phase and then transferred. 

While the above two variants improve the stability 

based on information theory, the proposed model im-

proves robustness through structural modification, so it 

can be easily combined with the variants without friction. 

In experiment section, we have described the perfor-

mance of the combined model and discuss the results. 

Video Input Generative Adversarial Imitation 

Learning 

In this section, we present overall structure and detailed 

description of our approach. Figure 1 shows the schematic 

diagram of GAIL, VAIL, DI-GAIL, and VIGAIL. The 

light blue part of the component means that it is transferred 

to the next phase and the orange part means the part that 

has been transferred. 

Global Encoder 

Our idea is simple. The idea is that the RL agent and dis-

criminator share an encoder for state encoding. Because 

the global encoder learns a reduced representation of the 

state, it can solve the problem of the state dimension domi-

nating on the action dimension in the discriminator. At the 

same time, the RL agent and discriminator learn using the 

same state representation, which solves the instability 

problem that can occur when using the state encoder. Since 

global encoders are used for both RL agents and discrimi-

nators, stable learning of global encoders is a key element 

in the learning process. We separated the entire training 

process into global encoder pre-training phase and main 

phase for stable learning of global encoder. In the pre-

training phase, we train the actor πB𝐶 = {E𝐵𝐶 , C𝐵𝐶} using 

BC algorithm. Where E𝐵𝐶  is encoder part of actor and C𝐵𝐶  

is classifier part of actor. After that, the trained E𝐵𝐶  is 

transferred to the global encoder and fixed. After that the 

RL agent is learned in the same manner as the GAIL. Be-

cause BC does supervised learning, it can model the expert 

trajectory most robustly. The object function of Video-

Input-GAIL is defined as equation 3. 

𝑚𝑖𝑛𝜋𝑚𝑎𝑥𝐷𝑠~𝑆,𝑎~𝐴∈(0,1)𝔼𝜋[log 𝐷(𝐸𝐵𝐶 (𝑠), 𝑎)]

+ 𝔼𝜋𝐸
[log(1 − 𝐷(𝐸𝐵𝐶(𝑠), 𝑎))] 

(3) 

Reward Penalization 

From the RL agent's point of view, 𝑚𝑖𝑛𝜋𝐸𝜋[log 𝐷(𝑠, 𝑎)] 
part of equation 2 can be reinterpreted as a reward function: 

R(s, a) = − log 𝐷(𝑠, 𝑎) (4) 

Note that the domain of D(s, a) is [0,1] and the equilibrium 

is formed when D(s, a) = 0.5  for all the (s, a)  pairs. If 

R(s, a) = − log 𝐷(𝑠, 𝑎), our agent will get positive reward 

function for every step, even though the agent did not learn 

at all. To solve it, we suggest new reward function: 

R(s, a) = − log(𝐷(𝑠, 𝑎) + 0.5)  (5) 

that satisfies R(s, a) = 0 when D(s, a) = 0.5. Not only this 

reward transformation results in stable performance near 

the equilibrium, it also provides a more strict reward for 

the RL agent. This is because the transformed reward func-

tion now has a negative range that can lead to suppression 

of bad policy. 

At the same time, we also consider the reward scheme. 

Figure 2 shows the reward schemes which considered in 

this work. The ‘Log shift’ scheme used in equation 5 

shows that the reward increases rapidly as the RL agent 

follows the expert trajectory, and the reward decreases 

slowly as it does not follow. This can be interpreted as 

having the effect of inducing exploitation in good policy 

and exploration in bad policy. However, exploitation and 

exploration are very task dependent. For example, a task 

with a lot of serious local optimum needs to avoid exploita-

tion in good policy, and a task with a very large search 

space needs to avoid exploration. Therefore, we finally 

propose a reward function where the reward scheme is 

generalized as δ. 

R(s, a) = − δ(𝐷(𝑠, 𝑎) + 0.5)  (6) 

Equation 6 allows us to modify the exploitation and explo-

ration strategies by changing δ according to a given task. 

We compared and analyzed the performance of the ‘Linear’ 

or ‘Tangent’ based reward scheme in the experimental sec-

tion. 

We summarize the learning algorithms of VIGAIL in al-

gorithm 1. As mentioned above, our method is generally 

applicable to the variants of GAIL. The application to 

VAIL is very similar to algorithm 1. Since there is already 

a VAE pre-training step in DI-GAIL, we summarized in 

algorithm 2 how to design DI-VIGAIL, a variant of DI-

GAIL. 

 
Figure 2. Visualization of reward schemes for reward 

function. 



 

Algorithm 1. Video Input GAIL (VIGAIL) 

Phase 1: Pre-training encoder step 

Input: expert trajectories 𝜏𝐸~𝜋𝐸, initial global encoder, actor 

network parameters 𝜂0, 𝛼0 

for i = 0, 1, 2, ⋯ , n: 

1. Sample τ from 𝜏𝐸   
2. Update the 𝜂𝑖 → 𝜂𝑖+1, 𝛼𝑖 → 𝛼𝑖+1,  

with minimize{L = − log 𝜋𝐵𝐶(𝑠)𝑖} 

Output: global encoder parameter 𝜂𝑛 

 

Phase 2: Main step 

Input: expert trajectories 𝜏𝐸~𝜋𝐸, initial actor, critic and discrimi-

nator network parameters 𝛼0, 𝛽0 , 𝛿0, and trained global encoder 

parameter 𝜂𝑛 from phase 1. 

1. Load 𝜂𝑛 to the global encoder and fix 

2. Learn under GAIL 

 

 

Algorithm 2. Directed Info VIGAIL (DI-VIGAIL) 

Phase 1: Pre-training encoder step 

Input: expert trajectories 𝜏𝐸~𝜋𝐸, initial global encoder, actor 

network parameters 𝜂0, 𝛼0 

for i = 0, 1, 2, ⋯ , n: 

1. Sample τ from 𝜏𝐸   
2. Update the 𝜂𝑖 → 𝜂𝑖+1, 𝛼𝑖 → 𝛼𝑖+1,  

with minimize{L = − log 𝜋𝐵𝐶(𝑠)𝑖} 

Output: global encoder parameter 𝜂𝑛 

 

Phase 2: Pre-training posterior step 

Input: expert trajectories 𝜏𝐸~𝜋𝐸, initial actor and posterior net-

work parameters 𝛼0, 𝜑0 , and trained global encoder parameter 

𝜂𝑛. 

for i = 0, 1, 2, ⋯ , n: 

        1. Sample τ from 𝜏𝐸   
2. Sample 𝑐𝑖  from posterior network 

3. Update the 𝜑𝑖 → 𝜑𝑖+1, 𝛼𝑖 → 𝛼𝑖+1,  

with minimize{ L𝑉𝐴𝐸  𝑙𝑜𝑠𝑠 𝑜𝑛 (Sharma et al. , 2018)} 

Output: posterior parameter 𝜂𝑛 

 

Phase 3: Main step 

Input: expert trajectories 𝜏𝐸~𝜋𝐸, initial actor, critic and discrimi-

nator network parameters 𝛼0, 𝛽0 , 𝛿0, and trained global encoder 

and posterior network parameter 𝜂𝑛 , 𝜑𝑚 from phase 1 and 2. 

1. Load 𝜂𝑛 , 𝜑𝑚 to the global encoder and posterior and fix 

2. Learn under DI-GAIL 

Experiments 

We demonstrate the effectiveness of our method on a hi-

erarchical navigation game. In addition, we also investigate 

various methods for reward penalization on the Lu-

narLander-v2 environment (Brockman et al., 2016). We 

will show that (1) global encoder is able to learn meaning-

ful representation of raw image sequence input, (2) reward 

penalization has remarkable effect to performance and (3) 

our method can be applied to variants of GAIL.  

The source codes of our experiments can be seen at 

https://github.com/sunghoonhong/VI-GAIL 

 

Environments 

To validate proposed approach, we choose hierar-

chical navigation task in grid world environment, which 

consists of a 7 x 7 grid with four rooms connected via 

bottleneck passage. Each grid is represented by 4 x 4 

pixel with RGB formulation. So, we got 32 x 32 x 4 size 

state input.  The agent spawns at a random grid and its 

goal is to reach a key, then reach a car. Both key and car 

spawn at a random grid in top left room and bottom right 

room each. In the figures, the agent is represented by the 

green rectangle, the key by the blue rectangle, and the 

car by the red rectangle. The reward is given as much as 

shortest distance when the agent achieves the goal, oth-

erwise -1 for each timestep. We utilize about 1M state-

action pairs generated by shortest path algorithm as ex-

pert trajectory. 

We also experiment in LunarLander-v2 environment, 

provided in OpenAI Gym (Brockman et al., 2016). The 

agent spawns at the top of the screen and its goal is to 

land on the landing pad. The action can be firing main, 

left or right engine or doing nothing. The state consists 

of position, velocity, angle, angle velocity and contact of 

legs. The reward is given for leg ground contact or land-

ing on landing pad. On the other hand, the penalty is 

given for firing engine or crashing. We use about 10K 

state-action pairs generated by the agent trained using 

PPO (Schulman et al., 2017) algorithm as expert demon-

stration. 

On the hierarchical navigation task, we conduct three 

experiments: demonstrating that our method is able to 

learn in raw image state, analyzing encoded states, and 

applying our method to variants of GAIL on various 

settings, including DI-GAIL for hierarchical learning. 

Furthermore, we analyze several ways of reward penali-

zation on LunarLander-v2 environment. 

 

Variants of VIGAIL  

We combine our proposed approach, Video-Input-

GAIL, to VAIL and DI-GAIL. In addition, we also ap-

ply it to GAIL without global encoder for demonstrating 

that reward penalization is effective even in another ex-

periment. For implementation detail, we use PPO algo-

rithm for training agents rather than TRPO (Schulman et 

al., 2015). 

 



Performance results 

We apply each component step by step to various var-

iations on the navigation task and show the quantitative 

evaluation in terms of performance and learning stability. 

The result is calculated by the score which is a mean 

return over 1000 episodes. We assume that the agent has 

learned enough if the score meets -10. As can be seen in 

Table 1, variants of GAIL applied our method show su-

perior performance rather than naïve methods without 

ours. Firstly, GAIL and VAIL cannot solve the task at 

all. And it seems that the agents only with global encod-

er improve very little bit, but still cannot solve either. On 

the other hand, the agents with only with reward penali-

zation show much better performance but still cannot 

completely solve either. As a result, the agents with our 

method meet score 1 which is the upper bound and show 

stable performance 
 

Analysis on global encoder 

In figure 3, we demonstrate that (1) loading the weights 

of global encoder from BC and (2) fixing the weight of 

global encoder during learning are necessary. To show 

these we experiment in other strategies. We experiment 

for both VIGAIL and VIGAIL + VAIL. ‘F’ means fix-

ing the weights of global encoder, ‘L’ means loading the 

weights from BC pre-training. One does not load the 

weights from BC pre-training but randomly initialize 

and train. The other loads the weights from the pre-

training and does not fix the weights during training. We 

skip the case which randomly initializes and fix the 

weights. Only with our proposed strategy the agent is 

trained properly. On the other hand, agents with other 

strategies fail to learn to get enough score, and most of 

them collapse as learning progresses. For the reason, we 

suspect that loading and fixing the weights reduce insta-

bility in GAIL framework which is inherently fluctuat-

ing.  

Furthermore, we analyze how the encoded states are 

distributed in figure 4. For the states at the bottom and 

right side, in case of the agent hasn’t taken key yet, the 

encoder gives a focus on the position of key rather than 

the position of car. For the states at the top, in case of the 

agent has already taken the key, it seems that encoder 

gives a focus on the distance between the agent and the 

car. Additionally, while the left-side state of the top and 

the left-side state of the bottom has the same distance 

between the agent and car, the distance of encoded states 

Table 1. Results on the navigation task. 

Model Best score score Meets -10 After meets -10 

GAIL -97.491 -99.43±0.80 - - 

VAIL -99.949 -100.00±0.01 - - 

GAIL_LS -1.516 -31.18±29.54 28K -9.10±9.26 

VAIL_LS -1.237 -25.71±28.28 23K -10.89±13.02 

GAIL_GE -99.939 -99.97±0.03 - - 

VIGAIL 1 -6.63±15.56 13K -3.37±9.26 

VIGAIL + VDB 0.996 -3.45±11.97 3K -2.39±8.59 

DI-GAIL_GE -92.824 -96.91±2.05 - - 

DI-VIGAIL- 1 -6.00±17.79 3K -4.12±13.32 

DI-VIGAIL + VDB 0.995 -4.84±14.28 3K -3.18±9.78 

 

 
Figure 3. Comparison of the training strategy for 

global encoder. 

 
Figure 4. Visualization of encoded state using t-SNE. 



is huge. The only difference between two states is 

whether the agent has taken the key or not. These show 

that the encoder works in terms of informative encoding 

and give a focus on which is important to the agent. 

 

Analysis on reward penalization 

For comparison of several schemes, we experiment 

using VIGAIL with 5 reward schemes on two environ-

ments. For LunarLander-v2 environment, we assume 

that it is solved if the score is over 200 and collapsed if 

the score is under 0 after learning. 

We investigate several reward penalization schemes 

on two environments. For a baseline, we use the original 

log reward which is always positive, and scaled log re-

ward which is divided by 10 so that the reward is 

bounded in smaller range. Then we compare shifted log 

reward, linear reward and tangent reward which is posi-

tive in [0, 0.5) and negative in (0.5, 1]. We used 

tan(0.5 − 𝐷(𝑠, 𝑎)) , 0.5 − D(s, a) for each tangent re-

ward and linear reward.  

As can be seen in Table 2,3, it is obvious that the 

agents trained under reward penalization show remarka-

bly high performance rather than non-penalization. On 

the other hand, there is no superior scheme among three 

penalization schemes. On the navigation task, linear 

scheme shows the best result, but on LunarLander-v2 

environment, tangent scheme seems that the most effec-

tive scheme. As a result, we demonstrate that reward 

penalization significantly improves the performance, and 

the choice of scheme can be a hyperparameter. 

 

Analysis on latent code 

We also apply our method to DI-GAIL which can 

learn hierarchical policy based on option framework. We 

set the latent code as four different categorical variables. 

In Figure 5, the arrow means the action by its direction 

and the code by its color. According to Figure 6, only 

two code variables are used which are un-supervisedly 

learned from pre-training. The agent appropriately uses 

two codes as episode proceeds. It seems that each code 

corresponds to different traversal strategy. The code 0 

denoted as pink color tends to direct the agent to traverse 

Table 2. Comparison of reward penalization 

schemes on navigation task. 

Scheme Score 

Log -99.97±0.03 

Log scaled -97.43±2.48 

Log shift -6.63±15.56 

Linear -5.02±14.18 

Tan -6.50±17.88 

 
Table 3. Comparison of reward penalization 

schemes on LunarLander-v2 environment. 

Scheme Score 
Solved 

(%) 

Collapsed 

(%) 

Log 91.84±86.53 0 0 

Log scaled 92.46±87.77 0 10 

Log shift 135.91±99.24 20 10 

Linear 146.40±97.11 30 10 

Tan 187.90±91.62 40 0 

 

 
Figure 5. Trajectories and predictions of each code for 

DI-VIGAIL on navigation task. 

 

 
Figure 6. Proportion of codes during total episodes. 

 



along left and downward, while the code 1 denoted as 

yellow color tends to direct the agent to traverse along 

right and upward. The last trajectory in Figure 5 shows 

that the agent which is trained using naïve method fails 

to learn. While the code in 8th timestep tells the agent to 

move downward, it chooses to move upward. It means 

that pre-trained distribution of code properly provides 

the agent to choose correct actions, even there is some 

possibilities of learning failure of the agent. From the 

above results, we can say it is possible that the DI- 

VIGAIL agent is able to learn consistent and meaningful 

latent code variables in unsupervised method and solve 

the problem which has hierarchy.  

 

Discussion 

Adopting the pretrained encoder showed meaningful 

performance improvement. It seems that using pre-

trained global encoder through BC mitigates inherent 

instability of GAIL framework. However, reconstruction 

pre-trained used in the World Model (Ha et al, 2018) 

doesn’t work in our experiment. Further study to find 

better structure or pre-training method for global encod-

er is needed. For instance, adopting transfer learning to 

the global encoder can be a feasible attempt. 

Moreover, it was revealed that penalizing reward 

played significant role when it comes to performance 

improvement of imitation learning task. Due to its ease 

of implementation and potential of general application, it 

can be considered as meaningful contribution. 

Furthermore, since there are many real-world prob-

lems which have complicated hierarchical structure and 

high-dimensional state space, especially raw image se-

quence, we expect high potential in our method in that it 

is able to learn hierarchical policy from raw image se-

quence inputs.  

Conclusion 

We have proposed VIGAIL, a novel GAIL based 

method that is adaptable to games that use image se-

quence inputs. The key ideas are the global encoder and 

reward penalization mechanism. Also, the proposed 

method is generally available for GAIL framework. As a 

result of in-depth experiments, the proposed method 

outperforms the existing methods, and further experi-

ments demonstrate the usefulness of the proposed meth-

od. 
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