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Abstract
This paper extends the notion of learning equilibrium
in game theory from matrix games to stochastic games.
We introduce Foolproof Cooperative Learning (FCL),
an algorithm that converges to a Tit-for-Tat behavior.
It allows cooperative strategies when played against
itself while being not exploitable by selfish players. We
prove that in repeated symmetric games, this algorithm
is a learning equilibrium. We illustrate the behavior
of FCL on symmetric matrix and grid games, and its
robustness to selfish learners.

1 Introduction
In William Golding’s novel “Lord of the Flies”, a group
of children who survived an airplane crash try to es-
tablish rules on a desert island in order to avoid chaos.
Unfortunately, they fail at forcing a cooperative solution
and some of them start defecting, which results in a
demented group behaviour. In this paper, we prevent
such tragedies in learning algorithms by constructing a
safe way to learn cooperation in unknown environments,
without being exploitable by potentially selfish agents.

In multi-agent learning settings, environments are usu-
ally modeled by stochastic games (Shapley 1953). Multi-
agent reinforcement learning (MARL) brings a frame-
work to construct algorithms that aim to solve stochastic
games where players individually or jointly search for
an optimal decision-making policy to maximize a re-
ward function. Individualist approaches mostly aim at
reaching equilibrium, taking the best actions whatever
the opponents behaviors are (Bowling and Veloso 2001;
Littman 2001). Joint approaches aim at optimizing a co-
operative objective and can be viewed as a single agent
problem in a larger dimension (Claus and Boutilier
1998), but are easily exploited when one agent starts
being individualist.

We focus on symmetric situations, making sure that
no agent has an individual advantage. For example, this
is the case on a desert island with a quantity of resources
equally accessible to all agents. Moreover, we consider
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repeated games, modelling the recurrent possibility to
start again the situation from the beginning. In the
island resource example, repetitions could represent suc-
cessive days or, at larger scale, 4-seasons cycles. In fact,
any stochastic game where players have the same reward
functions and dynamics is symmetric since all players
are starting with the same chances. This applies to most
of common-pool resource appropriation games.

In this context, we introduce Foolproof Cooperative
Learning (FCL), a model-free learning algorithm that,
by construction, converges to a Tit-for-Tat behaviour,
cooperative against itself and retaliatory against selfish
algorithms. We extend the notion of learning equilib-
rium (Brafman and Tennenholtz 2003) to stochastic
games, describing a class of learning algorithms such
that the best way to play against them is to adopt the
same behaviour. We demonstrate that FCL is a learning
equilibrium that forces a cooperative behaviour, and
we empirically verify this claim with two-agents matrix
games and grid-world repeated symmetric games.

When not given in the paper, the proofs of all stated
results are provided in the appendix.

2 Definitions and Notations
An N-player stochastic game can be written as a tuple
(S, (Ai)i=1...N ,P, µ0, (ri)i=1...N ), where S is the set of
states, Ai the set of actions for player i, P the tran-
sition probability (P(·|s, a1 . . . aN )), µ0 a distribution
over states (µ(s0)), ri the reward function for player i
(ri(s, a1 . . . aN )). We also assume bounded, deterministic
reward functions and finite state and action spaces.

In a repeated stochastic game, a stochastic game (the
stage game) is played and at each iteration, it continues
with probability γ ∈ [0, 1[ or terminates and starts again
according to µ0. This is repeated an infinite number of
times, and players have to maximize their average return
during a stage game (Munoz de Cote and Littman 2008).
Terminating with probability γ is equivalent to use a
discount factor while playing a stage game.

A stationary strategy (or policy) for player i, πi(·|s) ∈
ΠAi , maps a state to a probability distribution over its
set of possible actions. We note π−i the product of all



players strategies but player i and π = π1 × · · · × πN =
πi × π−i the product of all player strategies, called the
strategy profile. Given opponents strategies π−i, the
goal for a rational player i is to find a strategy π∗i that
maximizes its average return Ri during a stage game:

π∗i = argmax
πi

Ri(πi, π−i)

= argmax
πi

Eπi,π−i,P
[∑

l

γlr(sl, ali, al−i)
]
.

The policy π∗i depends on the opponents strategies and
is called the best response for player i to π−i. In general,
we call strategy any process {πt}t defining a stationary
strategy for any stage t. The value of a player’s non-
stationary strategy {πt}t is the average return over stage
games, Et>0[Ri(πti , πt−i)].

In order to allow rewarding or retaliation strategies,
we only consider games where all players are aware of all
opponents actions and rewards, and receive a signal each
time the game is reset. We also admit players to share
information with some opponents in order to organize
joint retaliation actions or joint explorations. Moreover,
we only consider Repeated Symmetric Games (RSG):
Definition 1 (Repeated Symmetric game (RSG)). An
N-player repeated stochastic game is symmetric if, for
any stationary strategy profile (π1 . . . πN) and for any
permutation ψ over players:

∀1 ≤ i ≤ N, Rψ(i)(πi, π−i) = Ri(πψ(i), πψ(−i)).

This generalizes the definition for symmetric N-player
matrix games (Dasgupta, Maskin, and others 1986) to
stochastic games where players utilities are replaced by
average returns1. In this paper, we use the concept of
N-cyclic permutations to construct specific strategies:
Definition 2 (N-cyclic permutation). A permutation
σ is N-cyclic if for all i, j ∈ {1 . . . N}, there is k such
that σk(i) = j.

2.1 Nash equilibrium
A Nash equilibrium describes a stationary strategy pro-
file π∗ = π∗1 × · · · × π∗N , such that no player can individ-
ually deviate and increase its payoff (Nash 1951):

∀1 ≤ i ≤ N, ∀πi ∈ ΠAi , Ri(πi, π∗−i) ≤ Ri(π∗i , π∗−i).

Note that in a symmetric game, for any Nash equilib-
rium with returns (R1 . . .RN ) and for any permutation
σ over players, there is another Nash equilibrium with re-
turns (Rσ(1) . . .Rσ(N)). This definition can be extended
to non-stationary strategies using expected return over

1Actually, the definition initially given: ∀i,Ri(πi, π−i) =
Rψ(i)(πψ(i), πψ(−i)) (Dasgupta, Maskin, and others 1986) is
incorrect in the sens that symmetries are not independent of
player identities, which is not the case if the right-hand return
is indexed with the inverse permutation instead (Vester
2012).

stage games: no players can individually deviate from
an equilibrium non-stationary strategy and increase its
average return over stage games (Et>0[xt] = E[

∑
t>0 x

t]
stands for the average over stages):

∀1 ≤ i ≤ N, ∀{πti ∈ ΠAi}t,
Et>0[Ri(πti , π

t,∗
−i )] ≤ Et>0[Ri(πt,∗i , πt,∗−i )].

As Et>0[Ri(πti , πt−i)] = Ri(πi, π−i) for stationary
strategy profiles, any stationary strategy equilibrium
is still an equilibrium among non-stationary processes.

3 Cooperative strategies
We call cooperative any strategy (not necessary sta-
tionary) that maximizes a common quantity R̂ =
f(R1 . . .RN ). Usual examples are strategies that maxi-
mize the sum, the product or the minimum of players
returns. In RSGs, the strategy that maximizes the mini-
mum of player returns is particularly interesting as it
coincides with the egalitarian solutions (Kalai 1977) to
the Bargaining problem (Nash Jr 1950) and is easy to
determine. In this paper, we refer to this strategy as
the egalitarian strategy. An important property of RSGs
is the fact that egalitarian solutions can always be ob-
tained by repeatedly applying an N-cyclic permutation
on a stationary strategy that maximizes the sum of
players returns.
Theorem 1. Let πΣ

i be a stationary strategy for player
i that maximizes the sum of players returns in an N-
player RSG, σ an N-cyclic permutation over players, and
t indexing the repeated stage games. Then, the strategy
πt = (πΣ

σt(1) . . . π
Σ
σt(N)) (where σt = σ ◦ · · · ◦ σ t times)

is an egalitarian strategy.

3.1 Tit-for-Tat
Given a stochastic game, one player i can learn a strat-
egy πr,ji that retaliates when another player j deviates
from a target strategy. If a retaliation is smaller than the
reward obtained by the player while deviating, the strat-
egy can be repeated until the retaliation is larger than
this reward in total. In that case, the target strategy is
said enforceable: if all player are accorded to retaliate
when a player deviates from a strategy profile and if
the retaliation is strong enough, no player can improve
its payoff by individually deviating from the strategy
profile. If opponents actions are part of the observable
state and if the target strategy profile and the dynamics
are deterministic, it becomes possible to construct a
stationary strategy that retaliates when a player does
not play according to the profile. If the retaliation lasts
forever after the first deviation, the strategy is by con-
struction a Nash equilibrium (Osborne and Rubinstein
1994). However, we are more interested in finished retal-
iations since it gives a chance to a selfish learning agent
to learn the target strategy. Such processes are called
Tit-for-Tat (TFT) and are known to induce coopera-
tion in repeated social dilemma (Axelrod and Hamilton



1981). Theorem 2 states that in an RSG, if the target
is an egalitarian strategy, there is always a stationary
way to retaliate and therefore one can always construct
a TFT strategy:
Theorem 2. In an RSG, let πr,j =
argminπ−j argmaxπj Rj(πj , π−j) = πr,jj × π

r,j
−j, and π∗

a egalitarian strategy (not necessary stationary). Then,
πr,j is a retaliation strategy with respect to π∗:

∀1 ≤ j ≤ N, ∀πj ∈ ΠAj ,

Rj(πj , πr,j−j) ≤ Et≥0[Rj(π∗,tj , π∗,t−j)].

For a player j, we note V cj = Et≥0[Rj(π∗,tj , π∗,t−j)]
its average return when all players cooperate, V rj =
Rj(πr,j) its best average return when others retaliate
and V dj = maxπj Et≥0[Rj(πj , π∗,t−j)] its best average re-
turn by defecting. When a single retaliation is too small
so it is still worth defecting for a selfish player, the
retaliation must be repeated. The minimal number or
retaliation repeats can be given by (see the proof of
Thm. 3 below):

Kj =
⌈
V dj − V cj
V cj − V rj

⌉
. (1)

In the edge case where V cj = V rj , the retalia-
tion strategy must be employed endless, but the co-
operative objective is not affected (this is the case
in rock–paper–scissors). Let {πtTFT}t be the (non-
stationary) strategy that follows π∗ if all players co-
operate, or repeat πr,j over Kj stage games if a player
j deviates from π∗. By construction, {πtTFT}t is a Nash
equilibrium.
Theorem 3. {πtTFT}t is a Nash equilibrium.

Proof. Since Kj ≥
V dj −V

c
j

V c
j
−V r

j
and V cj ≥ V rj , we write:

Kj(V cj − V rj ) ≥ V dj − V cj ,
which gives:

V cj ≥
1

Kj + 1(V dj +KjV
r
j ).

On the left, this is the average return over stages of an
always cooperating player, on the right this is the average
return over stages of any deviating player. Therefore,
for any {πtj}t 6= {πtTFT}t:

Et≥0[Rj(πtTFT)] ≥ Et≥0[Rj(πtj , πtTFT−j )].

4 Learning algorithm
In this paper, we define learning algorithms as follows:
Definition 3. A learning algorithm (for player i) is a
random process Ai = {πTi }T conditioned, at any stage
T > 0, by the historic

HT = {{sl, ali, al−i, rli, rl−i}l∈t}t<T

of all states, actions and rewards encountered up to stage
T − 1 (l ∈ t stands for the l-th transition belonging to
stage t).

The algorithm profile A = (A1 . . . AN ) is the set of
all players algorithms. We will note Ai(t) = πti .

4.1 Multi-agent learning
Reinforcement learning provides a class of algorithms
that aim at maximizing an agent’s return. Out of
all of them, our interest concerns Q-learning ap-
proaches (Watkins and Dayan 1992) for three reasons:
they are model-free, off-policy and they are guaranteed
to converge in finite state and action spaces. In a game
G, for a player i and given opponents policy π−i, the
basic idea is to learn a Q-function that approximates,
for all states and actions, the average return starting
from playing this action at this point while using the
best strategy. Ideally, the Q-function Qi associated with
player i’s policy that maximizes its return holds:

Qi(s, ai, a−i) = ri(s, ai, a−i)

+ γ
∑
s′

P(s′|s, ai, a−i) max
a′
i

Zi(a′i, s′, π−i)

where Zi(ai, s, π−i) =
∑
a′−i

π−i(a−i|s′)Qi(s′, a′i, a′−i) is
the expected value for gent i given its opponent policy.
Q-learning algorithms are constructed in order to pro-
gressively approximate the Q-function without approxi-
mating the problem dynamics P and reward functions
r, and without knowing the decision process that gen-
erated the historic buffer (in contrast, for example, to
policy gradient algorithms (Williams 1992)). In finite
state and action spaces, the approximation is obtained
by successively applying the updates:

Qt+1
i (st, ati, at−i) = Qti(st, ati, at−i)+

αt

(
rti + γmax

ai
Zi(ai, st+1, π−i)−Qi(st, ati, at−i)

)
,

where αt is the learning rate. However, when the oppo-
nent policy is not fixed, maximizing the Q-function with
respect to actions is no longer an improvement of the pol-
icy (the response of the opponents to this deterministic
policy can decrease the average player’s return). MARL
provides several alternative greedy improvements. For
example, a defensive player can expect opponents to
minimize its Q-function (minimax Q-learning). In that
case, a greedy improvement of the policy to evaluate the
value of a new state is obtained by solving the linear
problem (Littman 1994):

πgreedy
i (.|s) = argmax

πi

min
a−i

∑
ai

πi(ai|s)Qi(s, ai, a−i)(2)

= argmax
πi

min
a−i

Z−i(a−i, s, πi)



and the corresponding Q-learning update becomes:

Qt+1
i (st, ati, at−i) = Qti(st, ati, at−i)+

αt

(
rti + γmax

πi
min
a−i

Z−i(a−i, s, πi)−Qi(st, ati, at−i)
)
.

4.2 Learning equilibrium
We extend the notion of learning equilibrium (Brafman
and Tennenholtz 2003) to repeated stochastic games as
follows.
Definition 4 (Learning equilibrium). Let G be a set of
stochastic games. An algorithm profile A∗ = (A∗1 . . . A∗N )
is a learning equilibrium for G if, for any game g ∈ G,
there is a stage Tg such that, for any player i and any
learning algorithm Ai:

Et>Tg
[
Ri
(
Ai(t), A∗−i(t)

)]
≤ Et>Tg

[
Ri
(
A∗i (t), A∗−i(t)

)]
Consequently, just like Nash equilibrium for the choice

of a strategy, no player can individually follow an al-
ternative algorithm and increase its asymptotic score.
However, one important difference is the fact that a
learning algorithm is not defined with respect to a par-
ticular game, but a set of games.

We may think that a process always playing a Nash
equilibrium of the given game (πti = π∗i for all t) is a
learning equilibrium. However, such a process requires
an initial knowledge about the dynamics and the reward
functions of the game and can’t be obtained from a
process starting with an empty condition. Therefore, it
can’t be described as a learning algorithm. For the same
reason, a TFT process is not a learning equilibrium.
However, we may construct learning algorithms that
asymptotically behave as a TFT or always play a Nash
equilibrium. This is the key idea of FCL.

5 Foolproof cooperative learning
As we are interested in forced cooperation, we are

looking for a learning algorithm profile that converges
to a TFT process, retaliating if a player deviates from a
cooperative strategy. Since the objective of a coopera-
tive strategy is a common quantity and TFT processes
are symmetric, such a convergence can be obtained if
all players are using the same algorithm. FCL, as de-
scribed in Alg. 1 (for a player i), has the property to
converge to such a behavior when played by all players.
In an N-player game, each FCL player approximates
2N + 1 Q-functions: one associated with the cooperative
policy that maximizes the sum of all players (Qc), N
associated with retaliation policies preventing any de-
fection from other players j (Qrj), and N associated
with each opponent’s best response to the coopera-
tive strategy (Qdj ). At each played stage game, FCL
will play according to a egalitarian cooperative strat-
egy (learned through Qc) unless one of the opponents

deviates from that strategy. In case of an opponent’s
defection, all FCL agents will agree on a joint retaliation
according to the minimax strategy (learned through
Qrj with Eq.(2)) for K stages according to Eq.(1). In
order to allow exploration, a deterministic process φ(t)
is used to decide, at each time t, between exploration
and exploitation. We design φ as a known realization
of a random process such that explorations are endless
(∀T , ∃t > T,P[φ(t) = True] > 0), but becomes rare
enough with time so the probability of explorations tends
to zero (∀ε > 0 , ∃Tε , ∀t > Tε,P[φ(t) = True] < ε).
This can be implemented using a pseudo-random pro-
cess with a fixed seed, known by all FCL players. At
exploration stages, all agents are allowed to perform
any action without being accused of defection. In a way,
this algorithm can be seen as a disentangled version of
Friend-or-Foe Q-learning (FFQ) (Littman 2001) which
learns to play cooperatively if an opponent is cooper-
ative, or defensively if the opponent is defective with
a single Q-function. However, FFQ can’t learn a TFT
behavior as it is either always cooperative, or always
defensive. The following theorem 4 describe the asymp-
totically behaviour of FCL in RSGs. Theorem 5 states
that FCL defines a learning equilibrium for RSGs.
Theorem 4. Assume S and Ai are finite spaces and the
opponents are exploring all possible state-action couples
infinitely many times. Then, FCL converges to a TFT
behavior forcing the egalitarian cooperative strategy in
RSGs.
Theorem 5. FCL is a learning equilibrium for RSGs.

6 Experiments
Despite our theoretical claims are established for any
number of agents, we restrict our experiments to games
involving two players. We first explore the case of three
well known repeated symmetric matrix games: Iterated
Prisoners Dilemma (IPD), Iterated Chicken (ICH) and
Rock-Paper-Scissors (RPS). Table 1 shows the payoff
matrices. Then, we investigate larger state spaces with
grid games known to induce coordination problems and
social dilemma (Munoz de Cote and Littman 2008). We
introduced a new grid game, closer to the concept of
limited resource appropriation: the Temptation game.
In Temptation, making a movement to the sides can be
seen as taking immediately the resource, while making a
movement to the bottom can be seen as waiting for the
winter. All grid games are described in details in Table 2.
In order to verify that FCL is a learning equilibrium,
we compare the score obtained by FCL and by selfish
learning algorithm, Q-learning and policy-gradient (PG),
against FCL. Indeed, we expect a learning equilibrium
performing better than any other algorithm when the
opponents are following the learning equilibrium.

6.1 Implementation details
We implemented FCL using a state-dependent learning
rate αt = (

∑
l<t δ{sl = st})−1 that counts the number

of state visits, and exploration φ(t) = {Xt > εdt} where



Algorithm 1 FCL for player i.
input List of counters kj = 0 ∀j to repeat retaliations, exploration process φ(s, t), N-cyclic permutation σ, learning

rate sequence {αt}t, initial (arbitrary) functions Qc, {Qdi }i=1...N and {Qri }i=1...N , initial state s.
1: for stages t = 1 to +∞ do
2: while stage continue do
3: if Kj = 0∀j then
4: if φ(t) then
5: Explore ai ∼ U(Ai) with uniform probability
6: else
7: Take action ai = argmaxaσt(i)

maxa−σt(i)
Qc(s, ai, a−i)

8: end if
9: else

10: Randomly select an agent j such that Kj > 0
11: Take action ai ∼ argminπ−j maxaj

∑
a−j

π−j(a′−j |s)Qrj(s, aj , a−j)
12: kj ← kj − 1
13: end if
14: Observe a−i and new state s′, receive reward ri = ri(s, ai, a−i) and observe r−i
15: Qc′ ← maxa′

i
maxa′−i Q

c(s′, a′i, a′−i)

16: Qc(s, ai, a−i) = Qc(s, ai, a−i) + αt

( ∑
1≤j≤N

rj + γQc′ −Qc(s, ai, a−i)
)

17: for all other agents j 6= i do
18: V rj (s′)← minπ−j maxa′

j

∑
a′−j

π−j(a′−j |s′)Qrj(s′, a′j , a′−j)
19: V dj (s′)← maxa′

j
Qdj (s′, a′j , argmaxa−j maxa′

j
Qc(s′, aj , a−j))

20: Qrj(s, aj , a−j) = Qrj(s, aj , a−j) + αt

(
rj + γV rj (s′)−Qrj(s, aj , a−j)

)
21: Qdj (s, aj , a−j) = Qdj (s, aj , a−j) + αt

(
rj + γV dj (s′)−Qdj (s, aj , a−j)

)
22: Kj ←

⌈
V dj (s′)−V c(s′)
V c(s′)−V r

j
(s′)

⌉
23: if not φ(t) and aj 6= argmaxaσt(j)

maxa−σt(j)
Qc(s, aj , a−j) then

24: kj ← kj +Kj

25: end if
26: end for
27: s← s′

28: end while
29: end for

Xt is a pseudo-random uniform sample between 0 and 1
with a fixed seed, ε the initial threshold and d a decay
parameter close to one. The closer is d to one, the longer
lasts the exploration. For selfish Q-learning, we used a
similar learning rate and exploration process, however
with different seeds and decay parameters. The policy
gradient was implemented with a tabular representation
and Adam gradient descent with learning rate 0.1. Since
matrix games are not sequential and since grid games
were automatically reset after 30 steps, we could use a
discount factor γ = 1 to estimate value functions. In
practice, we found that adding 1 to the minimal num-
ber of retaliation repeats given in Eq. 1 significantly
improves the robustness to selfish learners. In iterated
matrix games, since they do not require large explo-
rations, we used ε = 0.5 and d = 0.9 for both selfish
Q-learning and FCL. We used ε = 1 and d = 0.995 in

grid games.

6.2 Results
Figure 1 displays our results with the three matrix games
IPD, ICH and RPS. Figure 2 displays our results on
grid games. As expected, the score of selfish learners was
never higher than the score of FCL, when the opponent is
FCL. Except in RCP, defection conduced to less reward
than cooperation because of retaliations. In RCP, FCL
found the only way to retaliate by infinitely playing
randomly against selfish learners, resulting in an average
of 0 reward for all players, equivalent to the reward for
cooperation. This illustrates the fact that FCL is a
learning equilibrium, since no algorithm performs better
than FCL against FCL. Consequently, FCL was never
exploited by selfish learners while being cooperative in
self-play.



Table 1: Payoff matrices used for IPD, ICH and RPS.

IPD ICH RPS
Coop. Defect

Coop. (-1,-1) (-3,0)
Defect (0,-3) (-2,-2)

Straight Swerve
Straight (-3,-3) (0,-2)
Swerve (-2,0) (-1,-1)

Rock Paper Scissors
Rock (0,0) (-1,1) (1,-1)
paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

Table 2: Grid games. A is the starting position of one player, B is the starting position of the other. At each turn,
both players simultaneously select one action among going up, down, left, right or stay. When reward cells with $
symbol are reached by one player, the player obtains the corresponding reward and the game is immediately reset.
$A:X means that only player A gets the reward X when reaching the cell, $X means that any player gets reward
X when reaching the cell, and $X,Y means that the player who reach the cell gets X and the other gets Y (if the
other player reach another rewarding cell, the rewards are summed). Two players can not be on the same cell at the
same time and they can not cross each other. In case of conflict, one player reaches the cell and the other stays with
probability 0.5. Grey cells are walls and are not reachable.

(a) Grid prisoners dilemma (b) Compromise
$100

$A:100 A B $B:100

$B:100 $A:100
A B

(c) Coordination (d) Temptation
$B:100 $A:100

A B
$20,−10 A B $20,−10
$40,−20 $40,−20

7 Related work
Learning cooperative behaviours in a multi-agent setting
is a vast field of research, and various approaches depend
on assumptions about the type of games, the type and
number of agents, the type of cooperation and the initial
knowledge.

When the game’s dynamics is initially known and in
two-player settings, Kalais’ bargaining solution can be
obtained by mixing dynamic and linear programming.
Therefore, a polynomial-time algorithm can be used to
solve repeated matrix games (Littman and Stone 2005),
as well as repeated stochastic games (Munoz de Cote
and Littman 2008). Since a bargaining solution is al-
ways better than a minimax strategy (the disagreement
point) (Osborne and Rubinstein 1994), a cooperative
equilibrium is immediately given. An alternative to our
cooperate or retaliate architecture consists in choosing
between maximizing oneself reward (being competitive)
or maximizing a cooperative reward, for example by
inferring opponents intentions (Kleiman-Weiner et al.
2016). The novelty of our approach is an online setting
witch does not require the dynamics nor the reward
function in order to construct a foolproof cooperative
behaviour.

In games inducing social dilemmas and when the
dynamics is accessible as an oracle, cooperative solutions
can also be obtained by self-play and then applied to
define a TFT behaviour forcing cooperation (Lerer and
Peysakhovich 2017), even when opponent actions are
unknown, since in that case the reward function already
brings sufficient information (Peysakhovich and Lerer
2018). Here again, they use an offline procedure witch

does not apply to our purely online setting.
Closer to our setting, when the dynamics is unknown,

online MARL can extract cooperative solutions in some
non-cooperative games, and particularly in restricted
resource appropriation (Pérolat et al. 2017). Using alter-
native objectives based on all players reward functions
and their propensity to cooperate or defect improves
and generalizes the emergence of cooperation in non-
cooperative games and limits the risk of being exploited
by purely selfish agents (Hughes et al. 2018). Regarding
these approaches, one advantage of FCL is to disen-
tangle the cooperative and the retaliating policies so it
can always switch from one behaviour to the opposite
without a forgetting and re-learning phase.

A similar approach, called Learning with Opponent
Learning Awareness (LOLA), consists in modelling the
strategies and the learning dynamics of opponents as
part of the environment’s dynamics and to derive the
gradient of the average return’s expectation (Foerster et
al. 2018). If LOLA has no guaranties of convergence, a
recent improvement of the gradient computation, which
interpolates between first and second-order derivations,
is proved to converge to a local optimums (Letcher
et al. 2018). Although such agents are purely selfish,
empirical results show that they are able to shape each
others learning trajectories and to cooperate in prisoners
dilemma. A limitation of this approach towards building
learning equilibrium is the strong assumption regarding
the opponents learning algorithms, supposed to perform
policy gradient. Also, this approach differs to our goal
since LOLA is selfish and aims at shaping an opponent’s
behavior (in 2-player settings) while FCL is cooperative



0.0

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0
0 20 40 60 80 100

PG
Q-learning
FCL

(a) Iterated prisoners dilemma

0 20 40 60 80 100

2.5

2.0

1.5

1.0

0.5

0.0

(b) Iterated chicken

0 20 40 60 80 100

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

(c) Rock paper scissors

Figure 1: Matrix games. Average scores over 20 runs obtained by two standard RL algorithms and FCL, playing
against FCL. In IPD and ICH, after some iterations selfish behaviours, as induced by Q-learning and PG, start being
sub-optimal because of FCL retaliations and accumulate less return than a cooperative behaviours, as induced by
FCL against itself. In RPS, FCL learns to play with a uniform distribution against selfish algorithms so their average
score is null. Black dotted line represents the average score after convergence of two selfish agent playing against
themselves (the minimax solution).
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Figure 2: Grid games. Average scores over 20 runs obtained by two standard RL algorithms and FCL, playing against
FCL. After some iterations, selfish behaviours, as induced by Q-learning and PG, start being sub-optimal because
of FCL retaliations and accumulate less return than a cooperative behaviour, as induced by FCL against itself.
Black dotted line represents the average score after convergence of two selfish agents playing against themselves (the
minimax solution).

but retaliates in response to selfish agents (in N-player
settings).

Learning equilibrium solutions have been constructed
for repeated matrix games (Brafman and Tennenholtz
2003; Ashlagi, Monderer, and Tennenholtz 2006). How-
ever, these solutions would not easily adapt to stochastic
games, one main reason being the fact that exploration
becomes infinite, while it only requires A×N steps in
N -agents matrix games with A different actions. Conse-
quently, after a finished phase of exploration in matrix
games, the deterministic payoff matrix is known and
they can extract a Nash Equilibrium to exploit. Note
that the restriction to symmetric games seems recurrent
in learning equilibrium literature (Brafman and Tennen-
holtz 2005; Tennenholtz and Zohar 2009). In repeated
congestion games, it is even possible to construct a class
of asymmetric games that does not admit any learn-
ing equilibrium, hence the importance of the symmetry
assumption.

8 Conclusion

We introduced FCL, a model-free learning algorithm
that, by construction, converges to a TFT behaviour,
cooperative against itself and retaliating against selfish
algorithms. We proposed a definition for learning equi-
librium, describing a class of learning algorithms such
that the best way to play against it is to adopt the same
behaviour. We demonstrated that FCL is a learning
equilibrium that forces a cooperative behaviour, and we
empirically verified this claim with two-agents matrix
games and grid-world repeated symmetric games.

Our approach could be improved by facilitating op-
ponent’s learning of the optimal cooperative response
and by using faster learning approaches. It could also be
adapted to larger dimensions such as continuous state
spaces and partially observed settings with function ap-
proximation by replacing tabular Q-learning with deep
Q-learning (Mnih et al. 2015). In that perspective, the
main limitation relies on the necessity to compute the
minimax strategy using a linear programming approach.
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