
Learning Task-Specific Representations of Environment Models
in Deep Reinforcement Learning

Yota Mizutani and Yoshimasa Tsuruoka
The University of Tokyo

{mizutani, tsuruoka}@logos.t.u-tokyo.ac.jp

Abstract

Model-based deep reinforcement learning has recently been
attracting increasing attention due to its sample efficiency.
In this paper, we introduce a new model-based reinforce-
ment learning architecture based on Imagination-Augmented
Agents (I2A). With our architecture, agent learns a policy
jointly with small but sufficient task-specific representations
of the states, which enable the lookahead of future states with
a relatively low computational cost. More specifically, our ar-
chitecture allows an agent to learn a representation suitable
for a given task by combining a vector representation corre-
sponding to the current state with the encoded features cor-
responding to predicted states. The agent also learns how to
predict the representation of the next state and learn a policy
with predicted states jointly and efficiently by using training
batches consisting of data arranged in chronological order.
Experimental results on the game of Sokoban demonstrate
that our architecture outperforms a state-of-the-art model-
based reinforcement learning architecture in terms of the time
of training and execution.

Introduction
Since the advent of Deep Q-Networks (Mnih et al. 2013),
research on applying deep reinforcement learning to video
games has attracted significant attention. In most of the pre-
vious work, agents do not have any prior knowledge about
the game, and receive only the raw pixels as the observation.
If an agent could learn the values of all possible states and
actions, it would be able to obtain the optimal strategy. How-
ever, in complex environments like video games, learning
the values of all possible states and actions is nearly impos-
sible. Due to incomplete learning, it is difficult for model-
free reinforcement learning methods to build an agent that
can select actions based on a long-term plan with respect to
future conditions.

On the other hand, model-based reinforcement learning
allows an agent to learn a policy using a state transition
model of an environment. Agents can perform imaginary
state transitions and find the optimal action before actually
taking an action, and therefore can make a long-term strat-
egy with anticipation of future states. In addition, they can

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

learn useful policies with a relatively small number of in-
teractions with environments by using trained environment
models (Clavera et al. 2018).

In complex environments such as video games and tasks
in the real world, since the model of an environment is of-
ten unknown, agents need to learn it through the interac-
tion with the environment (Sutton 1990). However, it is of-
ten difficult to obtain a perfect environment model, and the
learned models can be inaccurate. Some existing methods,
such as Imagination-Augmented Agents (I2A) (Racanière et
al. 2017), address this issue by using neural networks to dis-
till useful information from the predicted trajectories.

There are several issues to be addressed in model-based
deep reinforcement learning. Firstly, since the observa-
tions from environments often contain high-dimensional
data such as raw game screens, methods using an environ-
ment model with the raw observations as they are must han-
dle high-dimensional input and output of the environment
model. As a result, the computational cost at the time of
learning and testing becomes large, limiting the applicability
of the methods.

The second issue is the scheduling of training. Agents
must learn multiple interdependent models including an en-
vironment model, a policy using the learned model, and in
some cases, representations of observations. For example,
with a poor policy, agents cannot experience latter phases
of the game, and the environment model cannot learn them.
Therefore, fine adjustment of scheduling these kinds of
training is needed for methods that require a pre-trained en-
vironment model or a pre-trained network for converting ob-
servations to low-dimensional representations.

In this paper, we propose a new architecture for model-
based reinforcement learning. Our architecture allows
agents to learn low-dimensional representations of observa-
tions suitable for solving the given task by combining the
vector representation with the encoded features of predicted
states and using the combined vector to learn a policy. It also
learns state transitions in the representation space and how to
deal with the predicted states. All of these are trained jointly
and efficiently by calculating the loss functions of the rein-
forcement learning and the prediction at the same time with
training batches of Importance Weighted Actor-Learner Ar-
chitecture (IMPALA) (Espeholt et al. 2018) which consist
of data arranged in chronological order. Our method makes

it possible to establish a long-term strategy with a relatively
small computational cost even in environments with high-
dimensional input without complex scheduling of several
kinds of training procedures. Experimental results on the
game of Sokoban demonstrate that our architecture outper-
forms a state-of-the-art model-based reinforcement learning
architecture.

Background
Model-based reinforcement learning
The envitonment model for a reinforcement learning prob-
lem is formulated as the Markov decision processes (MDP),
whose transitions are expressed by the state transition func-
tion T (st+1|st, at) and the reward function r(st, at, st+1),
where st is the observation at time t, and at is the action
which the agent takes at time t. In this work, we consider de-
termistic environments and discrete action spaces. Agents of
model-based reinforcement learning learn these transitions
and use them to make policies for maximizing cumulative
rewards

∑∞
t=0 γ

trt, where γ is the discount factor for re-
wards, and rt means the reward which the agent receives at
time t.

Imagination-Augmented Agents (I2A)
Our approach to using predicted states for learning a pol-
icy is largely inspired by Imagination-Augmented Agents
(I2A) (Racanière et al. 2017). I2A is an architecture for
model-based reinforcement learning, which can interpret
predicted states from an imperfect environment model. An
agent of I2A learns an environment model that directly pre-
dicts the next observation image from the current observa-
tion image and the current action, and uses it for determining
the policy. Since an image given as an observation generally
has large dimensions, prediction is often complex. There-
fore, the accuracy of the learned model can be low, but by
extracting the features of predicted images through a convo-
lutional neural network and encoding them in the reverse
order of the time series using Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber 1997), the agent can
learn how to handle predicted states considering the inaccu-
racy of the model. All outputs encoded by multiple imagi-
nary rollouts are combined with hidden layers output by an
ordinary model-free agent and used to calculate the value
function and the policy function. In addition, they use roll-
out policy π̂ to decide actions for rollouts. By outputting
the policy close to the final policy function π, π̂ can predict
the same action as the agent will actually take in the future,
and predicted states by rollouts tend to be useful. Therefore,
agents distill π̂ from the actual value of π during training.

It has been reported that I2A agents recorded higher
scores than model-free Asynchronos Advantage Actor-
Critic (A3C) (Mnih et al. 2016) agents in the game of
Sokoban and MiniPacman. Moreover, in MiniPacman, I2A
achieved high scores in multiple kinds of tasks without
changing the trained environment model.

The environment model of I2A has the disadvantage that
the computational cost is large because it inputs observation

S,r

S

several env

N steps

TerminalS S S

S,r S,r S,r

S,rS,rS,rS,r

S,r S,r S,r S,r

S,rS,rS,rS,r

Figure 1: Training batch of IMPALA. S means an observa-
tion, and r means a reward. Data of actions and behaviour
policies are also necessary for training.

images and actions and outputs images directly correspond-
ing to the next observation. As the dimension of images in-
creases, the computational cost also increases, and therefore,
it can be a serious problem in applying it to complex tasks.

Importance Weighted Actor-Learner Architecture
(IMPALA)
Importance Weighted Actor-Learner Architecture (IM-
PALA) (Espeholt et al. 2018) is an architecture for dis-
tributed reinforcement learning, which enables efficient
training with many actors. In IMPALA, a large number of
actors are run in parallel, the observations for determining
actions and generated training data are queued respectively,
and batches are created from queues and sent to the Learner
in turn. Unlike ordinary A3C and Batched A2C (Clemente,
Castejón, and Chandra 2017), since there is a time gap be-
tween the time agents decide an action and the time train-
ing data are learned by the Learner, there is a possibility
that learning with training data obtained by other actors is
performed during the gap. This causes deviations between
the policy at the time of action and the policy at the time
of learning. In order to cope with the deviation, IMPALA
uses importance sampling and delays the calculation of ad-
vantages until training time. Normally, in A3C, the values
estimated by the value function are acquired at the time of
deciding actions, and advantages are calculated using them.
In IMPALA, if the advantages are calculated when a training
batch is made, the values of the value function will change
by the time of training. Therefore, the observations of the
next states are given to training data as indicated by Figure 1
and the advantages are calculated by inputting these obser-
vations to the value function network when the training is
actually done. Since an agent should calculate advantages in
reverse order for n-step observations, the training batches of
IMPALA consist of data in chronological order.

Proposed Architecture
Our architecture converts each observation of the current
state to a low-dimensional vector representation using a con-
volutional neural network, and predicts next states using a
LSTM network. After that the predicted states are encoded
with another LSTM network, and concatenated with the rep-
resentation of the current state to calculate the policy and

π

CNN

h

Predictor hpred

π

Predictor

Predictor

.

.

.

encoded

feature

a0

0

hpred

hpred

a

a

encoded

feature 1

a1

encoded

featuren

an

. . . .

h
encoded

feature 0

encoded

feature 1

encoded

feature 2
...

concat

π VEncoder

Encoder

Encoder

o
t

Policy Value of O

Figure 2: Overview of proposed architecture. An observation is converted to a low-dimensional vector using a CNN. The agent
predicts future states for each possible action and encodes them. All encoded features and vector representation of the current
state are combined to calculate the policy and value functions. White blocks in this figure have parameters to be trained.

π

CNNpred

Predictor hpred

π

Predictor

Predictor

.

.

.

encoded

feature

a

0

hpred

hpred

a

a Encoder

Encoder

Encoder

Pout

Pout

Pout

CNN

h t

0

o
t

Figure 3: Predictor of the full model. A vector representation
h of the current state is not used for prediction, but it is com-
bined with encoded features from the Predictor to calculate
the policy and value functions. Note that h is also used as a
teacher for training the Predictor.

value functions. This allows the agent to jointly learn rep-
resentations that are useful for solving the task and how to
make a policy with predicted states.

An overview of the architecture is shown in Figure 2 and
Algorithm 1. After converting an observation o to a feature
vector h, the following operation is performed for each pos-
sible action ai. First, the agent inputs the vector representa-
tion of ai to a LSTM network, whose hidden state is h, in or-
der to predict the representation of the next state. The LSTM
network used for next state prediction is called the Predictor.
The predicted next state hpred is input to the rollout policy
π̂, which is a fully connected neural network, and the next
action is predicted. The predicted action apred is input to
the Predictor, and further predictions of next states are per-

Algorithm 1 policy and value function
o is an observation from an environment

1: h0 ← CNN(s)
2: for a1 = 1, 2, · · · , n do
3: h1pred ← Predictor(h0, a1)
4: for t = 2, 3, · · · ,M do . predict for M steps
5: atpred ← Sample(π̂(ht−1pred))

6: htpred ← Predictor(ht−1pred, apred)
7: end for
8: encodeda1 ← Encoder(hMpred, h

M−1
pred , · · · , h1pred)

9: end for
10: f ← concat(h0, encoded0, encoded1, · · · , encodedn)
11: π ← softmax(Wπf + bπ)
12: V ←WV f + bV

formed. After repeating this for N steps, the predicted states
are input to another LSTM network in the reverse order of
the time series to obtain an encoded feature. After obtaining
the features for all ai, we combine them with h, and input
them to the feed forward neural network to obtain the values
of the policy function and the value function.

In the early stage of the training, a next state predicted by
the Predictor tends to be inaccurate, but since hidden state
h of the current state is combined and used for policy mak-
ing, a reasonable policy can be learned based on h. There-
fore, h tends to become a useful representation for learning
a policy as in model-free methods. As learning progresses, h
becomes a better representation and the accuracy of the Pre-
dictor also improves. After that, it is possible to learn better
policies based on predicted states of the Predictor than solely
based on h.

The Predictor and the vector representations of actions
are trained by their experience, which means the actions ac-
tually taken by the agent and the states actually observed
by the agent during training. We used the Huber Loss be-

Algorithm 2 policy and value function (full model)
o is an observation from an environment

1: h0 ← CNN(s)
2: x0 ← CNNpred(s)
3: for a1 = 1, 2, · · · , n do
4: x1 ← Predictor(x0, a1)
5: h1pred ←WPout

x1 + bPout

6: for t = 2, 3, · · · ,M do . predict for M steps
7: atpred ← Sample(π̂(ht−1pred))

8: xt ← Predictor(xt−1, apred)
9: htpred ←WPout

xt + bPout

10: end for
11: encodeda1 ← Encoder(hMpred, h

M−1
pred , · · · , h1pred)

12: end for
13: f ← concat(h, encoded0, encoded1, · · · , encodedn)
14: π ← softmax(Wπf + bπ)
15: V ←WV f + bV

tween a predicted representation and the corresponding rep-
resentation of the actual state as the prediction error, follow-
ing the Universal Planning Networks (UPN) (Srinivas et al.
2018). In this paper, IMPALA (Espeholt et al. 2018) was
used for training, and since the training batches of IMPALA
already contain states in chronological order as shown in
Figure 1, additional information is unnecessary for the train-
ing of state prediction. In addition, since the hidden state h,
which is the target value for the Predictor, is necessary to
calculate the value function and the policy function, train-
ing the policy and the Predictor at the same time eliminates
redundant calculations. When calculating the error of state
prediction, h and the parameters of the CNN are treated as
constant, and the gradients for the CNN parameters are not
calculated. This is because h is expected to be a useful repre-
sentation for solving the task. If the CNN is changed by pre-
diction error, h may become a representation that is easy to
predict. Conversely, when calculating the error of reinforce-
ment learning by the value function and the policy function,
the parameters of the Predictor and the vector representa-
tions of actions are treated as constants.

Regarding the rollout policy π̂, like I2A, training was per-
formed by giving the following distillation error:

Ldist(π, π̂) =

n∑
a=1

π(a|h) log π̂(a|h) ,

so that π and π̂ obtained from h in the training data become
closer. Also in this case h was treated as a constant.

The whole loss value of training data is as follows:

L = LRL + Lpred + Ldist ,

where LRL is the reinforcement learning loss, including the
loss of the policy and value functions, and the entropy loss,
which is calculated like normal IMPALA. Its gradient is as
follows:

∂

∂θ
L =

∂

∂θRL
LRL +

∂

∂θpred
Lpred +

∂

∂θπ̂
Ldist .

In the above equation, θRL includes the parameters of the
CNN, the Encoder, π and V. θpred includes the parameters
of the Predictor and the vector representation of actions.

Since h is the representation only suitable for obtaining
the policy and value functions, it is conceivable that in some
environments, information in h becomes insufficient to cal-
culate hpred of the next state, and the prediction of Predic-
tors can be impossible. Therefore, a Predictor as shown in
Figure 3 can be used to enable more accurate next state pre-
diction. In this paper, we call the model using this Predictor
a full model. In the full model, hpred is obtained by not forc-
ing h to be the hidden state of the Predictor, but applying the
output layer Pout after the Predictor output. Moreover, since
h cannot be used as the initial value of the hidden state of
the Predictor, another convolutional neural network for ob-
taining the initial value of the Predictor from an observation
o is required. The algorithm of the full model is shown in
Algorithm 2.

Since the proposed method encodes predicted states using
a LSTM network as in I2A, it allows the agent to learn ro-
bust handling of prediction data obtained from an inaccurate
environment model. In addition, since low-dimensional vec-
tor representations extracted from images are used for pre-
diction without directly inputting images to the environment
model, the computational cost can be suppressed. There are
components similar to existing methods in terms of individ-
ual devices, but the proposed architecture realizes simultane-
ous and efficient training of the representation that is suitable
for tasks, how to handle inaccurate environment models and
the state transition of the environment based on the learned
representation. This is the largest difference between exist-
ing methods and our architecture.

Experiments
In order to assess the effectiveness of the proposed method,
we trained agents using the proposed architecture and
model-free agents in Sokoban and compared the results.
Sokoban is a kind of puzzle game, whose goal is to move
all the boxes to target positions by moving a character in the
environment based on a grid world. The character can push
a box but cannot pull it, and hence it is necessary that the
agent sufficiently forecasts the future states.

In Racanière et al. (2017), the experiment was carried
out using the same Sokoban game. Most of the parameters
and the settings of the experiment follow theirs. Images such
as those shown in Figure 4 were used as observations for
agents. In this experiment, we used automatically generated
106 levels with four boxes in a 10× 10 grid world (borders,
whose width is one, are always filled with walls). If agents
could not solve a level in 120 steps, they gave up and went to
another level. Agents can receive a reward of −0.1 for each
step, 1 when putting a box to a target position, −1 when
removing a box from a target position, and 10 when solving
a level.

For all methods other than I2A, we obtained a h with 512
dimension using a CNN following Racanière et al. (2017),
except that the activation functions are replaced with Leaky
ReLU. For the model-free method, h was directly input to
fully connected networks, and policy and value functions

Figure 4: An example of the Sokoban game. Agents move
the green character in four directions, up, down, left and
right, and put all the brown boxes on the red target positions.
Each observation is an image, whose size is 80× 80.

Table 1: Number of parameters
Model RL Prediction
Simple model free 1.26× 106 N/A
Proposed 3.37× 106 2.10× 106

Proposed (full model) 3.37× 106 3.36× 106

Dummy predictor model 3.37× 106 N/A
I2A 6.02× 106 1.32× 106

were calculated. For Proposed and Proposed (full model),
each action had a 512 dimensional vector representation, the
input size and hidden layer size of the Predictor and Encoder
were all set to 512, and the number of prediction steps was
five. IMPALA was used for the training, and the number of
steps for advantage calculation was 12. RMSprop (Tieleman
and Hinton 2012) was used for the optimizer.

In order to assess the contribution of prediction, we also
tested a dummy predictor model, which was almost the same
as our proposed model, but Lpred was set to zero and the
Predictor was never trained.

The number of parameters of each model is shown in
Table 1. RL in the table means the number of parameters
trained by LRL, and Prediction means the number of pa-
rameters used for prediction. The parameters for the rollout
policies are included in the Prediction.

Figure 5 shows the fraction of levels that the agents were
able to solve as a result of training. Each time agents were
trained for a certain number of steps, we gave 104 levels
and evaluated the solved rate. We trained agents twice for
each model and averaged them. Training of the model-free
method was unstable and the value of the value function di-
verges three of five times of training procedures, and there-
fore we used the result of the two training procedures which
were normally completed. The result shows that our pro-
posed methods achieve higher scores than the model-free
method. Also, the score of the dummy predictor model is al-
most the same as the socre of the simple model-free method,
suggesting that the main reason why our models outperform
the model-free method is not the increase in the model size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4x10
8

 8x10
8

 1.2x10
9

 1.6x10
9

fr
ac

ti
o
n
 o

f
le

v
el

s
so

lv
ed

environment steps

Simple model free
Proposed

Proposed (full model)
Dummy predictor model

Figure 5: Scores of the game of Sokoban per trained envi-
ronment steps.

Table 2: Training speed
Model Training speed (Steps/s)
Simple model free 2.68× 104

Proposed 9.22× 103

Proposed (full model) 7.23× 103

I2A 8.07× 102

I2A (with env model learning) 6.44× 102

Proposed (small batch size) 5.75× 103

but the prediction. In this experiment, the difference between
the simple proposed model and the full proposed model was
small. Since the error on the next state prediction does not
affect the expression of h, prediction accuracy might not be
obtained by the simple model. This does not happen in this
experiment.

The training speed of each method is shown in Table 2.
The experiment was carried out on a machine having a CPU
with more than 6 cores / 12 threads and a GPU board of
GeForce GTX 1080 Ti. We see that the proposed model can
be trained with about three times more computational costs
than the simple model-free method. For I2A, we measured
the calculation time in the case of traing with a pre-trained
environment model following Racanière et al. (2017) and
joint learning of the environment model as our proposed
method. We see that the proposed method can be trained
an order of magnitude faster than I2A. Since I2A requires
much GPU memory, we could not use the same batch size
for I2A as other methods. Therefore, we also tested our pro-
posed method with the same batch size as that of I2A, which
is noted as Proposed (small batch size) in Table 2. The rela-
tionships between the scores and training times are shown in
Figure 6. Note that I2A in this figure means I2A with joint
learning of the environment model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20 24

fr
ac

ti
o
n
 o

f
le

v
el

s
so

lv
ed

Wall-clock time [hours]

Simple model free
Proposed

Proposed (full model)
I2A

Proposed (small batch size)

Figure 6: Scores of the game of Sokoban and training time.

Related Work
Model-based reinforcement learning with
low-dimensional representations
Reinforcement Learning with Hidden Layer Predictor (RL-
HLP) (Kameko et al. 2017) allows agents to learn a policy
using future states by learning a state transition model of the
hidden layer of an A3C agent. They obtain a convolutional
neural network htA3C = CNN(st; θcnn) and a feed forward
neural network πt = Softmax(FF(htA3C ; θπ)) from a pre-
trained agent of A3C. Using these networks, they train the
network that predicts the next hidden layer ht+1

pred,a from the
current hidden layer htA3C and the current action a. How-
ever, since CNN(st; θcnn) and FF(htA3C ; θπ), which are
used for prediction, are fixed during the training of RL-HLP,
there is the problem that the upper limit of the performance
is determined by the pre-trained A3C agent.

World Models (Ha and Schmidhuber 2018) are another
model-based architecture. Their World Model encodes im-
ages obtained as observations from an environment with
a Variational Autoencoder (Kingma and Welling 2014).
Therefore, in the World Model, vector representations tend
to obtain features for reconstructing images, while in RL-
HLP, vector representations tend to obtain information nec-
essary for achieving the task. Since features in the World
Model do not depend on the task, the method has an ad-
vantage of the ability to reuse a trained environment model
even if the rewards of reinforcement learning changes. How-
ever, the information necessary for achieving the task can
be different from the features made by the Variational Au-
toencoder, and hence, the representation of the World Model
can be inefficient in terms of achieving the task. To train the
vector representations and the state transitions in the World
Model, they use observations gathered by random agents
beforehand. Thus, it is difficult to respond to latter phases
of the game. Ha and Schmidhuber (2018) have proposed a
method that repeats the training of the Variational Autoen-
coder and the state transition model with observations gen-
erated by the trained agent.

Buesing et al. (2018) proposed and compared several en-
vironment models with compact state representations. They

use decoders which convert low-dimensional states to ob-
servation images, and train environment models to be able
to predict the next observations. They reported that their
agents, which use their proposed environment models and
I2A architecture, outperformed model-free baselines on the
game Ms. Pac-Man. However, before training agents, they
trained environment models with observations obtained by
pre-trained policy. Therefore, their approach can have the
same problem as the World Model.

Abstract representations of observation images
from environments
In order to predict the next state in complex environments,
there are several studies to convert high-dimensional image
observations into low-dimensional intermediate representa-
tions.

In RL-HLP, an intermediate representation is obtained by
using the CNN of pre-trained A3C agents. By using the Vari-
ational Autoencoder in the World Model, features as images
on the game screen are used. In Universal Planning Net-
works (UPN) (Srinivas et al. 2018), by training to imitate
experts’ behavior, an intermediate representation suitable for
solving the task is obtained. In Contrastive Predictive Cod-
ing (Oord, Li, and Vinyals 2018), a useful representation for
next state prediction is obtained by combining prediction
of several steps ahead and negative sampling. Burda et al.
(2018) compare several intermediate representations such as
those based on a Variational Autoencoder and inverse dy-
namics in the next state prediction for curiosity based learn-
ing.

The objective of reinforcement learning is to maximize
cumulative rewards from environments, in other words, to
achieve a task efficiently. An intermediate representation
that does not depend on tasks such as the one learned with
a Variational Autoencoder flexibly responds to changes in
rewards, but on the other hand, it may be an inefficient rep-
resentation from the viewpoint of task achievement. A UPN
learns representations suitable for task achievement by imi-
tating experts’ behavior, but requires experts’ trajectories.

In reinforcement learning, the distribution of observations
can change through training by, for example, progressing the
stage of the game. Therefore, the data which are obtained
when agents cannot performe well are sometimes not very
useful. With respect to the methods that preliminarily train
intermediate representations, there is a risk that the perfor-
mance depends on the distribution of the data obtained at
the time of preliminary training. In the World Model, some
methods to address this issue have been proposed by train-
ing agents and cellecting data repeatedly, but it decreases
learning efficiency and it becomes necessary to adjust the
repetition cycle of training.

Conclusion and Future Work
In this paper, we have proposed a new model-based rein-
forcement learning architecture which enables the predic-
tion of the next state using low-dimensional representations
suitable for task achievement. The agent jointly and effi-
ciently learns an intermediate representation of game states,

which is useful for accomplishing the task, the state transi-
tion model of the environment based on the learned repre-
sentation, and the policy based on the obtained environment
model. We have shown that our architecture achieved higher
scores than an existing model-free method in Sokoban, and
that the computational cost of our architecture is signifi-
cantly smaller than that for I2A.

Our architecture can perform training with realistic calcu-
lation time even if it is combined with a complicated method
by suppressing the computational cost for prediction. For fu-
ture work, it is conceivable to handle stochastic state transi-
tions by combining with MDN-RNN (Ha and Eck 2017).
Also, a combination with a network that predicts rewards
that were not handled in this paper may be useful for im-
proving performance.

References
Buesing, L.; Weber, T.; Racaniere, S.; Eslami, S.; Rezende,
D.; Reichert, D. P.; Viola, F.; Besse, F.; Gregor, K.; Hass-
abis, D.; et al. 2018. Learning and querying fast generative
models for reinforcement learning. arXiv:1802.03006.
Burda, Y.; Edwards, H.; Pathak, D.; Storkey, A.; Darrell, T.;
and Efros, A. A. 2018. Large-scale study of curiosity-driven
learning. arXiv:1808.04355.
Clavera, I.; Nagabandi, A.; Liu, S.; Fearing, R. S.; Abbeel,
P.; Levine, S.; and Finn, C. 2018. Learning to
adapt in dynamic, real-world environments through meta-
reinforcement learning.
Clemente, A. V.; Castejón, H. N.; and Chandra, A. 2017.
Efficient parallel methods for deep reinforcement learning.
arXiv:1705.04862.
Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih, V.;
Ward, T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning, I.; et al.
2018. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In Proceedings of the
International Conference on Machine Learning (ICML).
Ha, D., and Eck, D. 2017. A neural representation of sketch
drawings. arXiv:1704.03477.
Ha, D., and Schmidhuber, J. 2018. World models.
arXiv:1803.10122.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Kameko, H.; Suzuki, J.; Mizukami, N.; and Tsuruoka, Y.
2017. Deep reinforcement learning with hidden layers on
future states. Computer Games Workshop at IJCAI.
Kingma, D. P., and Welling, M. 2014. Auto-encoding vari-
ational Bayes. In Proceedings of the International Confer-
ence on Learning Representations (ICLR).
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing Atari with deep reinforcement learning. NIPS Deep
Learning Workshop.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In Pro-

ceedings of the International Conference on Machine Learn-
ing (ICML), 1928–1937.
Oord, A. v. d.; Li, Y.; and Vinyals, O. 2018. Rep-
resentation learning with contrastive predictive coding.
arXiv:1807.03748.
Racanière, S.; Reichert, D.; Weber, T.; Vinyals, O.; Wierstra,
D.; Buesing, L.; Battaglia, P.; Pascanu, R.; Li, Y.; Heess,
N.; et al. 2017. Imagination-augmented agents for deep
reinforcement learning. In Advances in Neural Information
Processing Systems, 5692–5699.
Srinivas, A.; Jabri, A.; Abbeel, P.; Levine, S.; and Finn, C.
2018. Universal planning networks: Learning generalizable
representations for visuomotor control. In Proceedings of
the International Conference on Machine Learning (ICML),
4739–4748.
Sutton, R. S. 1990. Integrated architectures for learn-
ing, planning, and reacting based on approximating dynamic
programming. In Machine Learning Proceedings 1990. El-
sevier. 216–224.
Tieleman, T., and Hinton, G. 2012. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent mag-
nitude. COURSERA: Neural networks for machine learning
4(2):26–31.

