
Confidence-Based Aggregation of Multi-Step Returns for Reinforcement Learning

Girish Raguvir Jeyakumar1, Balaraman Ravindran1,2
1Department of Computer Science and Engineering, 2Robert Bosch Centre for Data Science and AI (RBCDSAI)

Indian Institute of Technology Madras, Chennai, India
girishraguvir@gmail.com, ravi@cse.iitm.ac.in

Abstract

Reinforcement Learning (RL) enables modelling of complex
behavioral patterns for sequential decision making tasks with
well-defined goals. Many successful RL algorithms rely on
Temporal Difference (TD) Learning and consequently, accu-
rate estimation of the value function becomes important. In
this respect, λ-returns (LR) have proven effective in the past
as they enable aggregation over multiple multi-step returns
and help in faster propagation of delayed rewards. Though the
exponentially decaying weighing scheme of λ-returns does
garner validity from such theoretical and empirical results
in the literature, it’s important to observe that it is a static
weighing scheme with limited flexibility. We propose a new
paradigm of dynamically weighted returns called Confidence-
based Returns wherein the multiple many-step look-aheads
are explicitly valued based on the confidence in the estimates.
We propose a simple and efficient way to model confidence
and use it to derive Confidence-based Returns. We incorpo-
rate Confidence-based Returns (CR) into the Asynchronous
Advantage Actor Critic (A3C) algorithm to obtain a new vari-
ant of A3C called CRA3C and demonstrate the efficacy of
CRA3C by showcasing results on multiple high-dimensional
visual input tasks in the Atari 2600 domain.

Introduction
Reinforcement Learning (RL) (Sutton and Barto 1998) has
recently seen immense progress with tremendous success in
many domains which had previously seemed insurmountable
(Mnih et al. 2015; Mnih et al. 2016; Silver et al. 2017b;
Todorov, Erez, and Tassa 2012). RL enables modelling of
complex behavioral patterns for sequential decision making
tasks with well-defined goals where no explicit guidance, as
in supervised learning, is feasible. In RL, tasks are modelled
as Markov Decision Processes (MDPs) (Puterman 2014).

Traditional RL algorithms typically solve the MDP by
maintaining tabular estimates for the value function of each
state and updating it using the Bellman Optimality Equation
(Puterman 2014). However, as is the case with many games,
when one moves to problems with exponentially large or
continuous state spaces, these traditional tabular methods are
rendered moot. Complex computer games like Atari, Doom,
Dota 2 etc. have high-dimensional visual inputs, posing a very

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

difficult challenge. Such limitations faced by traditional RL
methods along with tremendous progress in representation
learning using deep neural networks (Bengio and others 2009;
LeCun, Bengio, and Hinton 2015) lead to the advent of
Deep Reinforcement Learning (DRL). Deep Neural Net-
works provided a way to learn abstract representations in
an end-to-end manner, directly from data. They enabled
RL algorithms to achieve generalization over large state
spaces. This motivated a lot of work in recent years and
the rapid utilization of parallel advances in Deep Neu-
ral Networks (Krizhevsky, Sutskever, and Hinton 2012;
Hochreiter and Schmidhuber 1997) in RL has led to vast
advancements in multiple complex domains - Atari 2600
(Bellemare et al. 2013; Mnih et al. 2015; Mnih et al. 2016;
Jaderberg et al. 2017), Chess (Silver et al. 2017a), Go (Silver
et al. 2017b) etc.

Many of these successful RL algorithms utilize Temporal
Difference (TD) Learning (Sutton 1988). In TD learning,
we use n-step returns wherein we bootstrap from the value
function estimate of the nth future state to obtain an estimate
for the current state. Consequently, accurate estimation of
the value function becomes important. Precise estimates of
value functions would not only lead to better policy estimates
but would also result in faster learning. In this respect, λ-
returns (LR) (Sutton and Barto 1998) have been observed to
be effective as they enable aggregation over multiple multi-
step returns and help in faster propagation of delayed rewards.

However, while the weights assigned by λ-returns do
garner some validity from the bias-variance trade-off as-
sociated with the choice of shorter versus longer returns
in-addition to positive empirical results in literature, it is
a static weighing scheme with limited flexibility and lit-
tle sophistication. We propose the use of a more dynamic
and explicit choice of weights based on confidence in the
bootstrapped estimates. Though vaguely similar notions
have been considered previously (White and White 2016;
Thomas et al. 2015), the body of work is largely limited and
the results shown are minimal. One reason behind dearth of
such works is the difficulty in quantifying and optimizing
such a metric. Recently, to address this in the DRL setting, the
concept of Autodidactic Returns (AR) (Sharma et al. 2017)
was proposed wherein the agent is also equipped to learn the
weights it wants to assign to each of the n−step returns. In
a specific derivative called Confidence-based Autodidactic



Returns (CAR), they discuss a theoretically weak confidence-
based interpretation using limited post-training analyses but
they provide no explicit guarantee of it’s generalization. The
agent isn’t explicitly constrained to learn confidences and
their formulations are largely restricted to the DRL setting.
Their results on the Atari 2600 domain are only on par with
baseline λ-returns - a model which is much more simple,
efficient and easier to implement. The idea is well-justified,
but we believe that the problem is due to an inherent difficulty
in the agent learning certainty/confidence on it’s own and we
want to address it.

We propose a more explicit and widely applicable
paradigm of weighted returns called Confidence-based Re-
turns (CR). In CR, the multiple many-step look-aheads are
valued based on the maintained confidence in their estimates.
To model this, we formulate a simple and efficient way to
estimate confidence and then use it derive CR. We believe
that CR’s explicit importance to "usefulness" of the boot-
strapped estimates by specifically modelling confidence dif-
ferentiates it’s from λ-returns, AR and all other similar works.
To demonstrate the efficacy of CR, we incorporate CR into
the Asynchronous Advantage Actor Critic (A3C) (Mnih et
al. 2016) algorithm to obtain a new variant of A3C called
CRA3C and showcase results on multiple complex tasks in
the Atari 2600 domain.

Background
In this section, we briefly discuss a few RL concepts which
are essential to understanding our contribution.

Preliminaries
Any reinforcement learning (RL) problem is typically for-
mulated as a Markov Decision Process (MDP) (Puterman
2014), specified as 〈S,A, r,P, γ〉 where S denotes the state
space, A is the action space, r : S × A 7→ R is the reward
function, P : (S ×A)×S 7→ [0, 1] is the transition probabil-
ity distribution and γ ∈ [0, 1) is the discount factor. An RL
agent engages with an environment E over a certain number
of discrete time steps to achieve a specific goal guided by
rewards. The agent follows a policy π : S × A 7→ [0, 1]
which, given the state, is a probability distribution over the
set of actions A. At any given time step t, the agent in state
st ∈ S, chooses an action at ∈ A according to π(st) and
moves to state st+1 while receiving a reward rt+1 from the
environment E . The goal is to identify a policy π that max-
imizes the expected discounted sum of future rewards. The
state-value V π(s) of a state s under a policy π is the expected
sum of discounted future rewards obtained by starting at s
and following π: V π(s) = Eπ[

∑∞
k=0 γ

krt+k+1|st = s].

Multi-step Returns
Monte Carlo methods estimate the value function of a state
based on the entire trajectory ranging from that state until
end of the episode. On the other hand, one-step TD methods
utilize just the immediate reward and then bootstrap from the
next state’s value function to substitute for future rewards.
These form two ends of a spectrum of methods that can
be used for estimating the value function and the concept

of multi-step returns bridges the gap between them. Multi-
step returns compute an estimate using an intermediate set
of rewards (typically more than 1 and less than the entire
episode) from the trajectory and then bootstrapping for the
rest. Specifically, a n-step return uses the first n rewards and
bootstraps for the rest using the value-function estimate of
(n+ 1)th state. If T is the last time step of the episode, the
n-step return estimate G(n)

t , where 1 ≤ n ≤ (T − t), for
state st is given by

G
(n)
t =

n∑
i=1

γi−1rt+i + γnV (st+n) (1)

G
(n)
t can then be used for iterative learning of the value

function by using the TD(0) update equation

V (st)← V (st) + α(G
(n)
t − V (st))

where G(n)
t serves as the TD-target and α is learning rate.

Weighted Multi-step Returns
Weighted multi-step returns are linear combinations of mul-
tiple n-step returns with varying n’s. Considering the bias-
variance trade-off associated with the choice of n, when one
considers multi-step returns, a logical solution is to utilize
a weighted average of n-step return estimates instead. Such
an estimate can be used as a TD-target in any TD learning
method as long as the sum of the weights is 1 (Sutton and
Barto 1998).

Given n-step returns G
(1)
t , G

(2)
t , · · · , G(h)

t for n ∈
{1, 2, · · · , h} and associated weights w(1), w(2), · · · , w(h)

such that
h∑
i=1

w(i) = 1, we can define a TD-target

Gwt =

h∑
n=1

w(n)G
(n)
t

λ-Returns
λ-returns arises from the forward view understanding of el-
igibility traces. For every state, we look ahead in time to
future rewards and value function of states and then decide
how best to combine them. Specifically, TD(λ) can be con-
sidered as an instance of weighted multi-step returns with
the weight w(n) for the n-step backup being proportional to
λn−1, with the normalization term being (1− λ) (for ensur-
ing that weights sum upto 1). The resulting combination can
serve as a TD-target and is given by

Gλt = (1− λ)
∞∑
n=1

λn−1G
(n)
t

As one can see, the weights decay exponentially with each
step. Once a terminal state is reached at T , all further n-step
returns becomeGt (Monte Carlo estimate). So we can rewrite
Gλt as

Gλt = (1− λ)
T−t−1∑
n=1

λn−1G
(n)
t + λT−t−1Gt



We can also define a truncated form of λ-returns for shorter
time horizons of say h steps.

Gλt = (1− λ)
h−1∑
n=1

λn−1G
(n)
t + λh−1G

(h)
t

λ-returns have been in the RL literature for a long time (Peng
and Williams 1996; Sutton and Barto 1998; Seijen and Sutton
2014) and they have recently been used in the DRL setting
as well (Schulman et al. 2015; Gruslys et al. 2017; Sharma et
al. 2017).

Confidence-based Returns
In this section, we provide a complete description of our
proposed model of Confidence-based Returns (CR).

Definition
A n−step return estimate for V (st) is obtained by boot-
strapping from V (st+n). But the key aspect to note is that,
V (st+n) is in itself an estimate. With this in mind, when one
considers a weighted multi-step return derived from boot-
strapped estimates G(1)

t , G
(2)
t , · · · , G(h)

t , a natural way to
designate weights would be based on the confidence we have
on the corresponding estimates (Sharma et al. 2017).

We choose to weigh G
(n)
t based on how confident

we are about our estimate for V (st+n). Let’s denote
the confidence on V (st+n) as c(st+n). Given the confi-
dences c(st+1), c(st+2), · · · , c(st+h) we define the weights
w(1), w(2), · · · , w(h) by taking a softmax (to ensure
h∑
i=1

w(i) = 1)

w(i) =
ec(st+i)∑n=h
n=1 e

c(st+n)
(2)

We then define the confidence-based TD-target as

Gwt =

h∑
i=1

w(i)G
(i)
t (3)

Modelling Confidence
"Confidence" or "certainty" is typically quantified by the
width of the confidence interval associated with an esti-
mate. Using "uncertainty" to motivate exploration has long
been studied in RL. Most algorithms are based on the OFU
heuristic - "optimism in the face of uncertainty" (Strehl,
Li, and Littman 2009) and use state (or state-action) visit
counts to model "uncertainty". The agent is motivated to
move to less frequently visited regions of the state space
by assigning larger reward bonuses to lower counts. They
have traditionally been tabular in the sense that they define
exploration bonuses by maintaining a table of state (or state-
action) visit counts.

UCB1 bandit algorithm (Lai and Robbins 1985) is one of
the best known algorithms derived from this fundamental
idea. UCB1 chooses an action a such that the associated up-

per confidence bound Q̂t(a)+
√

2 log(t)
N(a) is maximum, where

Q̂t(a) is empirical reward mean and N(a) is the visit-count.
In the more generalized MDP setting, MBIE-EB (Strehl and
Littman 2008) proposes solving the augmented Bellman equa-
tion

V (x) = max
a∈A

[R(x, a) + γEp[V (x
′
)] + βN(x, a)

−1
2 ]

with the exploration bonus being proportional to N(x, a)
−1
2

and R̂ and P̂ being the empirical reward and transition func-
tion respectively. This bonus term is based on the theoretical
guarantee that the confidence intervals associated with both
the rewards and transition functions shrink as N(x, a)

−1
2 ,

where N(x, a) is the state-action visit count. This depen-
dence stems from Chernoff bounds and is provably optimal
(Kolter and Ng 2009).

When the policy is sufficiently random enough that most
actions would be tried at any new state, we can replace that
state-action visit count with just the state visit count. Since
the uncertainty term is now independent of action taken, we
move N(x)

−1
2 out of the maximization, giving us a simpler

augmented Bellman equation.

V (x) = max
a∈A

[R(x, a) + γEp[V (x
′
)]] + βN(x)

−1
2 (4)

Equation 4 motivates the agent to explore new states by using
a bonus term proportional to the "uncertainty in the state"
modelled by N(x)

−1
2 . This simplifying reduction has been

used extensively and it is found to be experimentally just as
sound (Tang et al. 2017; Martin et al. 2017; Bellemare et al.
2016).

We pivot on this specific result to address our problem of
modelling confidence in value function estimates. Consider-
ing that the value function is a direct function of the state,
N(x)

−1
2 becomes an effective proxy for the uncertainty in

the value function as well. Since larger uncertainty would
mean lower confidence and vice-versa, we propose the utility
of N(x)

1
2 as a measure of confidence c(x) on an estimate of

V (x). Simply put, this would mean value function estimates
of states with larger visit-counts are considered to be more
"confident" estimates. This choice also derives support from
the intuition that more frequently recurring states would en-
able the network to learn more "confident" estimates for their
value functions.

Maintaining State-Visit Counts
For small discrete MDPs, simple tabular based methods
which already fit conveniently in the framework of tabu-
lar RL algorithms (typically used for solving such MDPs)
can be used to maintain visit counts. These methods have
been well utilized in literature, especially for addressing the
problem of efficient exploration (Strehl and Littman 2008).
However, these become ineffective when one moves to high-
dimensional state spaces. Considering most recent works in
RL have focused on such complex tasks, we direct our focus
to such domains as well.

A fundamental problem which arises in high-dimensional
continuous state spaces is that most states are never visited
during training and consequently the visit-counts remain



close to zero for a majority of the states. To overcome this,
we need a mechanism by which visit-counts can be general-
ized to unseen states. This concept of generalized state visit-
counts has been studied and people have proposed multiple
ways to compute and maintain such counts (Tang et al. 2017;
Martin et al. 2017; Bellemare et al. 2016; Ostrovski et al.
2017). We derive from one such work by Tang et al. where
they use a simple yet effective generalization of classic tabu-
lar methods through hashing.

Hashing for High-Dimensional State Spaces The counts
are maintained using hashing . The state-space is discretized
by using a hash function φ which maps states to integers
and a counter n(.) is maintained over these hashed entities.
The counter is initially set to zero and for every state s en-
countered, n(φ(s)) is incremented by one. At any instant, the
state-visit count of any state s is obtained by simply accessing
n(φ(s)).

The choice of the hash function φ is clearly important.
φ should be such that "similar" states are mapped to the
same bucket while "dissimilar" states are mapped to different
buckets. With this in mind, a popular and efficient type of
locality-sensitive hashing (LSH) called SimHash (Charikar
2002). LSH is widely used for answering nearest neighbour
queries in high-dimensional spaces based on different simi-
larity metrics (Andoni and Indyk 2006). SimHash, in specific,
utilizes similarity based on angular distance. For given state
s ∈ S, SimHash computes the binary hash-code as

φ(s) = sgn(Ag(s)) ∈ {−1, 1}k

where A ∈ Rk×D with i.i.d. samples drawn from N (0, 1)
and g : S → RD is a preprocessing function (can be iden-
tity as well). As one can infer, the choice of k determines
the length of the hash code and consequently the granular-
ity. Suitable choice of k is necessary for φ to appropriately
distinguish between states.

Algorithm 1 summarizes how we maintain state-visit
counts.

Algorithm 1 Maintaining state visit-counts

1: Define g : S → RD . state pre-processing function
2: Initialize A ∈ Rk×D with i.i.d. samples from N (0, 1).
3: Initialize all values n(.) to 0.
4:
5: function ADD_COUNT(s)
6: φ(s)← sgn(Ag(s))
7: n(φ(s))← n(φ(s)) + 1

8:
9: function GET_COUNT(s)

10: φ(s)← sgn(Ag(s))
11: return n(φ(s)) . N(x)← GET_COUNT(x)

Experimental Setup
We showcase the efficacy of our model of Confidence-based
Returns (CR) by incorporating it in the A3C algorithm (Mnih
et al. 2016). The choice of A3C is due to its immense suc-
cess in Deep RL, especially in high-dimensional visual input

domains. We evaluate CRA3C (Confidence-based Returns +
A3C) in it’s ability to learn game-play in the Arcade Learn-
ing Environment (Bellemare et al. 2013). ALE is a important
benchmark in Deep RL with it’s wide variety of Atari 2600
video games in high-dimensional state-spaces.

Using Weighted Multi-step Returns in A3C
Considering that the A3C algorithm already uses multi-step
returns, the extension to using weighted multi-step returns
is trivial. In fact, incorporation of any weighted multi-step
return variant is quite simple as they, by definition, already
form a valid TD-target.

We simply use the weighted multi-step return estimate,
Gwt , in place of Gt. The actor and critic gradient sample
estimates consequently become:

∇θactor
log πθactor

(at|st)(Gwt − V (st))

∇θcritic(Gwt − Vθcritic(st))2

Computing the TD-target
For a given state st, we compute the TD-target for V (st)
by aggregating look-aheads upto h−step returns. By do-
ing a forward pass through the A3C network for states
st+1, st+2, ...., st+h, we obtain value function and pol-
icy estimates : (V (st+1), π(st+1)), (V (st+2), π(st+2)), ...,
(V (st+h), π(st+h)). We also obtain the rewards rt+1, rt+2,
..., rt+h from the environment by taking actions as dictated by
π(st), π(st+2), ..., π(st+h−1) respectively. Using the value
function estimates and the rewards we calculate n-step re-
turns G(1)

t , G
(2)
t , ..., G

(h)
t using Equation 1. In parallel, we

use the pipeline described in Section to calculate c(st+1),
c(st+2), ..., c(st+h). We then use Equations 2 and Equation
3 to compute the TD-target for V (st).

Preprocessing function g
We experiment with two non-trivial preprocessing functions:
BASS (Bellemare et al. 2013) and Feature-Space Transfor-
mation (Martin et al. 2017). The former, though not restricted
to, is specifically modelled for tasks in Atari 2600 while the
latter is more generic.

BASS When it comes to tasks in the Atari 2600 domain the
input to any RL algorithm is typically the game screen itself.
Thus, given the image, we divide it into square cells and com-
pute the average pixel intensity of each color channel within
a cell. These mean values would now serve as representatives
for the corresponding pixels. We then normalize the values
to lie in [0,1]. Mathematically,

IBASS(i, j, z) =

 1

255C2

∑
(x,y)∈cell(i,j)

I(x, y, z)


where z is the channel, C is cell size, (x, y, z) is the pixel
location in the original image I , (i, j, z) is the the pixel loca-
tion in the processed image IBASS and (i, j) is the location
of the cell. Using this, we move from a A×A×K image to
a
⌈
A
C

⌉
×
⌈
A
C

⌉
×K image.



BASS is essentially a preprocessing that provides us with
a reduced representation which captures the essence of the
game-screen and is invariant to small object motions. Being
easy to implement and also light-weight, it enables us to up-
date and retrieve counts faster as we now have much smaller
input to hash (a reduction factor of O(C2)).

Feature-Space Transformation This preprocessing can
be used with any value-based RL algorithm that makes use
of a function approximator. The idea is to use the representa-
tion learnt by the function approximator in the feature space
instead of the state itself. This preprocessing will make states
that "share features" to have similar counts. In addition, since
the representation learnt in the feature space is typically of
much smaller dimension than the original state representation,
we would incur lower computational overhead for maintain-
ing state-visit counts.

It’s important to note that this preprocessing ensures that
the same lower dimensional feature representation is used to
estimate both the value function and the confidence. Consid-
ering that we want to essentially use these counts as a proxy
for the uncertainty in the value function estimate, the motiva-
tion is to treat states with similar features used in estimating
value function, to be similar. In-addition, this preprocessing
requires no additional computations as we already compute
the representation for estimating the value function.

In A3C, the policy and the value function is estimated
directly from the final LSTM layer outputs (Mnih et al. 2016).
Consequently, for our A3C experiments, the output of this
LSTM layer serves as the feature-space representation of the
state.

Additional Tricks
We utilize a few additional tricks tailored for our model
definition.

Count-based Exploration Exploration is vital for success
of any RL algorithm. It’s important for the agent to explore
the environment and identify opportunities with high rewards
and long-term gains. Typically most methods rely of simple
rules like ε−greedy. But recent works (Tang et al. 2017;
Martin et al. 2017; Bellemare et al. 2016) have shown success
in using more sophisticated count-based exploration methods.
Motivated by such works, we use a count-based exploration
bonus for our experiments.

Exploration is motivated by adding a exploration bonus
r+ : S 7→ R to the reward function, given by

r+(s) =
βexp√
n(φ(s))

where βexp ≥ 0. The agent is trained by using rewards given
by (r + r+) but performance evaluation is done devoid of
such bonus rewards.

Count Decay As emphasized earlier the value-function
targets for the agent are estimates themselves. Hence there is
an inherent problem of non-stationarity - the value function
targets keep changing with learning. In such a setting, when
the target changes, previously accumulated counts may no

longer be relevant. In order to take this into account, we decay
the counts over time.

n(φ(s)) = βcountn(φ(s)) + 1

where 0 < βcount ≤ 1.

Confidence Decay In our current formulation, the impor-
tance of G(j)

t is derived solely from the confidence c(st+j)
in the estimate of V (st+j). But as emphasized by λ-returns,
it is also important to keep the bias-variance trade-offs in
mind. Even though the agent maybe be confident of the value
function estimates used by longer returns, the large variance
arising from using a longer chain of rewards obtained from a
stochastic environment maybe detrimental. So we experiment
with more "return-sensitive" measure of confidence which
takes this into account.

We decay confidences based on the length of the return.
For k−step return G(k)

t bootstrapped from V (st+k), we use
c(st+k) as

c(st+k) = βk−1confN(st+k)
1
2

where 0 < βconf ≤ 1. This can be viewed as a generalization
as βconf = 1 would give us our original formulation.

Algorithms Overview

Table 1: Overview of algorithms

Pre-processing (g) βconf Algorithm
Identity 1 CRA3C-Pixel
Feature-Space Tranform 1 CRA3C-FS
BASS 1 CRA3C-BASS
BASS 0.9 CRA3C-BASS-CD

We experiment with 4 different algorithms as shown in Table
1. All algorithms utilize βexp = 0.02, βcount = 0.99 and
we use two different values of βconf : 0.9 and 1. The hyper-
parameters for our algorithms were chosen based on perfor-
mance on 4 tasks: Asterix, Bowling, Seaquest and Space
Invaders. The same set of hyper-parameters were then used
for all experiments on rest of the tasks.

Results
We evaluate our algorithms on 10 Atari 2600 games and
we compare our results against 3 competitive and relevant
benchmarks: A3C, CARA3C (Confidence-based Autodidac-
tic Returns + A3C) and LRA3C (λ-returns + A3C) (Mnih et
al. 2016; Sharma et al. 2017).

Each agent was trained for 50 million time steps. All eval-
uations were done using the best agent obtained after 50
million time-steps of training. All reported values are aver-
ages of results corresponding to experiments performed twice
with different random seeds. This was done to ensure robust-
ness of our results to random initialization. The scores for
A3C, CARA3C and LRA3C, under identical experimental
settings of 50 million training steps and two different random
seeds, were obtained from Sharma et al..



Figure 1: Training curves showing evolution of performance over time.

Gameplay Performance

Table 2: Mean and median scores across 10 Atari games
computed as percentages of A3C baseline, along with number
of games improved over A3C.

Algorithm Mean Median > A3C
CARA3C 150% 115% 8
LRA3C 212% 119% 7
CRA3C-FS 132% 120% 7
CRA3C-BASS-CD 222% 128% 9
CRA3C-Pixel 230% 138% 8
CRA3C-BASS 257% 155% 10

Figure 1 shows the evolution of performance of our al-
gorithms - CRA3C-Pixel, CRA3C-FS, CRA3C-BASS and
CRA3C-BASS-CD - during training for four of our best per-
forming games: Asterix, Beam Rider, Gopher and Seaquest.

Table 2 shows the mean and median scores computed as
percentages of A3C. For each algorithm, we also present
the number of games (out of 10) in which that algorithm
performed better than the A3C baseline.

As one an see, all our algorithms achieve significant im-
provements over A3C with three of them - CRA3C-Pixel,
CRA3C-BASS and CRA3C-BASS-CD - outperforming all
3 benchmarks. The raw scores obtained by our methods are
discussed in sections below. From Table 2, it’s clear that
CRA3C-BASS performs the best, with it achieving over 2.5×
the scores of A3C on average. Importantly, in-addition to per-
forming considerably well, CRA3C-BASS is also consistent.
It achieves improvement over A3C on every single task unlike
any other.

Table 3 shows the benchmark scores and also the highest
score achieved among benchmarks, MB, for each game.

Without Confidence Decay
Table 4 summarizes our results. Without any preprocessing,
CRA3C-Pixel already outperforms many of the baselines
with it achieving the best score in 5 out of 10 games and
it being in top two in 7 out of 10 games. CRA3C-BASS
achieves further improvements on top of this, with it being
the best in 7 out 10 games and it being in the top two in 9
out 10 games! Keeping in mind that BASS is just a static
preprocessing function, designed based on a generic idea
of Atari game screens, strong performance of BASS draws

Table 3: Scores attained on Atari 2600 games: Benchmark
Scores. MB represents the maximum score among bench-
marks.

Game A3C CARA3C LRA3C MB
Asterix 3548.50 6043.25 8552.25 8552.25
Beam Rider 2764.60 3270.96 2516.79 3270.96
Bowling 54.69 43.17 50.14 54.69
Breakout 409.15 582.37 596.94 596.94
Freeway 20.58 20.63 20.81 20.81
Frostbite 366.50 407.75 450.50 450.50
Gopher 7611.00 8322.10 8766.00 8766.00
Kangaroo 46.00 177.00 445.00 445.00
Seaquest 2798.60 2726.40 2792.00 2798.60
Space Inv. 766.40 1457.05 1125.15 1457.05

focus to how important preprocessing can be. Thus using
more task-oriented and adaptive preprocessing can possibly
lead to better hash functions and in turn help achieve more
improvement.

Based on Table 2, one might feel that performance CRA3C-
FS is not on par with the other two but notably, as shown
in Table 4, it achieves top scores in Gopher & Freeway and
beats A3C in 7 out 10 games. One major reason for it’s poor
reflection in Table 2 is because of it’s stats being severely
pulled down by poor performance in Kangaroo. Based on
some initial experiments, we believe that the drop in per-
formance in games like Kangaroo and Beam Rider might
be due to over-compression of information by feature-space
transformation as compared to the other two and consequent
prevention of derived the hash function from suitably distin-
guishing between different states in the game.

With Confidence Decay
To understand the impact of confidence decay, we chose
the best performing algorithm from the previous section
- CRA3C-BASS - and incorporated confidence-decay (i.e
βconf < 1) to obtain CRA3C-BASS-CD. Table 5 summa-
rizes our results.

As one can see, confidence decay leads to significant im-
provement in performance, with it boosting the already the
best scores of CRA3C-BASS on 6 out 7 games! But oddly,
in games in which CRA3C-BASS doesn’t perform upto
the mark, CRA3C-BASS-CD performs worse. This leads
to lower mean improvement across games as seen in Table 2.



Table 4: Scores attained on Atari 2600 games: MB represents
the maximum score among benchmarks. Bold highlights
scores > MB. Asterisk (∗) indicates best among proposed
methods.

Game MB Pixel BASS FS
Asterix 8552.25 10932.00 12238.00∗ 10423.00
BeamRider 3270.96 5474.28 5603.63∗ 2654.42
Bowling 54.69 84.88∗ 54.94 72.92
Breakout 596.94 513.17 526.73 543.82∗

Freeway 20.81 21.04 21.02 21.19∗

Frostbite 450.50 288.30 1125.95∗ 325.70
Gopher 8766.00 9770.00 9574.90 10053.80∗

Kangaroo 445.00 440.00∗ 435.00 52.00
Seaquest 2798.60 2776.20 4112.80∗ 2786.40
Space Inv. 1457.05 1126.95 1250.48∗ 975.70
> MB - 5/10 7/10 4/10

Table 5: Scores attained on Atari 2600 games: MB represents
the maximum score among benchmarks. Bold highlights
scores > MB. Asterisk (∗) indicates best among proposed
methods.

Game MB BASS BASS-CD
Asterix 8552.25 12238.00 15088.50∗

Beam Rider 3270.96 5603.63 5761.59∗

Bowling 54.69 54.94 65.96∗

Breakout 596.94 526.73∗ 475.40
Freeway 20.81 21.02 21.12∗

Frostbite 450.50 1125.95 1330.65∗

Gopher 8766.00 9574.90 9742.30∗

Kangaroo 445.00 435.00∗ 245.00
Seaquest 2798.60 4112.80∗ 2763.30
Space Inv. 1457.05 1250.48∗ 974.00
> MB - 7/10 6/10

For this, we believe a more exhaustive tuning of βconf might
alleviate the problem. However, performance of CRA3C-
BASS-CD stands to emphasize the importance of modelling
confidence and how better models can lead to much better
results.

Conclusion and Future Work
We propose a novel paradigm of weighted returns called
Confidence-based Returns (CR). In CR, the agent weighs
the various bootstrapped n-step returns dynamically based
on the confidence it has on the corresponding estimates. We
propose a simple and efficient way to model confidence in
value function estimates and then describe how they can be
used to obtain TD-targets using CR. We showcase the efficacy
of CR by incorporating it in A3C and presenting state-of-
the-art results in Atari 2600 domain. We believe that the
dynamicity of CR and it’s explicit importance to "usefulness"
of the bootstrapped estimates by modelling confidence is key
to it’s success.

The concept of Confidence-based Returns is quite generic.
It’s core idea is to essentially use a more sophisticated ag-
gregation of bootstrapped estimates based on the notion of

confidence, to come up with better value function targets. We
believe that this way of modelling TD-targets is powerful and
can lead to very successful learning in a variety of tasks. We
have proposed one way of modelling confidence but there
could multiple other. Using more sophisticated counting mod-
els in the current framework is also be another path for further
exploration.

We want to emphasize that our proposed idea can be com-
bined with any RL algorithm wherein the TD-target is mod-
elled using n-step returns. TD-learning is fundamental to RL.
Thus the problem of learning better value function estimates
is always going to be important and we believe that we have
taken significant steps towards it with this work.

References
[Andoni and Indyk] Andoni, A., and Indyk, P. 2006. Near-

optimal hashing algorithms for approximate nearest neighbor
in high dimensions. In Foundations of Computer Science,
2006. FOCS’06. 47th Annual IEEE Symposium on, 459–468.
IEEE.

[Bellemare et al.] Bellemare, M. G.; Naddaf, Y.; Veness, J.;
and Bowling, M. 2013. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial
Intelligence Research 47:253–279.

[Bellemare et al.] Bellemare, M.; Srinivasan, S.; Ostrovski,
G.; Schaul, T.; Saxton, D.; and Munos, R. 2016. Unify-
ing count-based exploration and intrinsic motivation. In
Advances in Neural Information Processing Systems, 1471–
1479.

[Bengio and others] Bengio, Y., et al. 2009. Learning deep
architectures for ai. Foundations and trends R© in Machine
Learning 2(1):1–127.

[Charikar] Charikar, M. S. 2002. Similarity estimation tech-
niques from rounding algorithms. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of comput-
ing, 380–388. ACM.

[Gruslys et al.] Gruslys, A.; Azar, M. G.; Bellemare, M. G.;
and Munos, R. 2017. The reactor: A sample-efficient actor-
critic architecture. arXiv preprint arXiv:1704.04651.

[Hochreiter and Schmidhuber] Hochreiter, S., and Schmidhu-
ber, J. 1997. Long short-term memory. Neural computation
9(8):1735–1780.

[Jaderberg et al.] Jaderberg, M.; Mnih, V.; Czarnecki, W. M.;
Schaul, T.; Leibo, J. Z.; Silver, D.; and Kavukcuoglu, K.
2017. Reinforcement learning with unsupervised auxiliary
tasks. To appear in 5th International Conference on Learning
Representations.

[Kolter and Ng] Kolter, J. Z., and Ng, A. Y. 2009. Near-
bayesian exploration in polynomial time. In Proceedings
of the 26th Annual International Conference on Machine
Learning, 513–520. ACM.

[Krizhevsky, Sutskever, and Hinton] Krizhevsky, A.;
Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems (NIPS)
1097–1105.



[Lai and Robbins] Lai, T. L., and Robbins, H. 1985. Asymp-
totically efficient adaptive allocation rules. Advances in ap-
plied mathematics 6(1):4–22.

[LeCun, Bengio, and Hinton] LeCun, Y.; Bengio, Y.; and Hin-
ton, G. 2015. Deep learning. Nature 521(7553):436–444.

[Martin et al.] Martin, J.; Sasikumar, S. N.; Everitt, T.; and
Hutter, M. 2017. Count-based exploration in feature space
for reinforcement learning. arXiv preprint arXiv:1706.08090.

[Mnih et al.] Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu,
A. A.; Veness, J.; Bellemare, M. G.; Graves, A.; Riedmiller,
M.; Fidjeland, A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.;
Sadik, A.; Antonoglou, I.; King, H.; Kumaran, D.; Wierstra,
D.; Legg, S.; and Hassabis, D. 2015. Human-level control
through deep reinforcement learning. Nature.

[Mnih et al.] Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.;
Lillicrap, T. P.; Harley, T.; Silver, D.; and Kavukcuoglu, K.
2016. Asynchronous methods for deep reinforcement learn-
ing. In International Conference on Machine Learning.

[Ostrovski et al.] Ostrovski, G.; Bellemare, M. G.; Oord, A.
v. d.; and Munos, R. 2017. Count-based exploration with
neural density models. arXiv preprint arXiv:1703.01310.

[Peng and Williams] Peng, J., and Williams, R. J. 1996. Incre-
mental multi-step q-learning. Machine learning 22(1):283–
290.

[Puterman] Puterman, M. L. 2014. Markov decision pro-
cesses: discrete stochastic dynamic programming. John Wi-
ley & Sons.

[Schulman et al.] Schulman, J.; Moritz, P.; Levine, S.; Jordan,
M.; and Abbeel, P. 2015. High-dimensional continuous con-
trol using generalized advantage estimation. arXiv preprint
arXiv:1506.02438.

[Seijen and Sutton] Seijen, H., and Sutton, R. 2014. True
online td (lambda). In International Conference on Machine
Learning, 692–700.

[Sharma et al.] Sharma, S.; J, G. R.; Ramesh, S.; and Ravin-
dran, B. 2017. Learning to mix n-step returns: Generaliz-
ing lambda-returns for deep reinforcement learning. CoRR
abs/1705.07445.

[Silver et al.] Silver, D.; Hubert, T.; Schrittwieser, J.;
Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.;
Kumaran, D.; Graepel, T.; et al. 2017a. Mastering chess
and shogi by self-play with a general reinforcement learning
algorithm. arXiv preprint arXiv:1712.01815.

[Silver et al.] Silver, D.; Schrittwieser, J.; Simonyan, K.;
Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.;
Lai, M.; Bolton, A.; et al. 2017b. Mastering the game of go
without human knowledge. Nature 550(7676):354.

[Strehl and Littman] Strehl, A. L., and Littman, M. L. 2008.
An analysis of model-based interval estimation for markov
decision processes. Journal of Computer and System Sciences
74(8):1309–1331.

[Strehl, Li, and Littman] Strehl, A. L.; Li, L.; and Littman,
M. L. 2009. Reinforcement learning in finite mdps: Pac anal-
ysis. Journal of Machine Learning Research 10(Nov):2413–
2444.

[Sutton and Barto] Sutton, R. S., and Barto, A. G. 1998. In-
troduction to reinforcement learning. MIT Press.

[Sutton] Sutton, R. S. 1988. Learning to predict by the meth-
ods of temporal differences. Machine learning 3(1):9–44.

[Tang et al.] Tang, H.; Houthooft, R.; Foote, D.; Stooke, A.;
Chen, O. X.; Duan, Y.; Schulman, J.; DeTurck, F.; and
Abbeel, P. 2017. # exploration: A study of count-based
exploration for deep reinforcement learning. In Advances in
Neural Information Processing Systems, 2750–2759.

[Thomas et al.] Thomas, P. S.; Niekum, S.; Theocharous, G.;
and Konidaris, G. 2015. Policy evaluation using the ω-return.

[Todorov, Erez, and Tassa] Todorov, E.; Erez, T.; and Tassa,
Y. 2012. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 5026–5033. IEEE.

[White and White] White, M., and White, A. 2016. A greedy
approach to adapting the trace parameter for temporal dif-
ference learning. In Proceedings of the 2016 International
Conference on Autonomous Agents & Multiagent Systems,
557–565. International Foundation for Autonomous Agents
and Multiagent Systems.


	Introduction
	Background
	Preliminaries
	Multi-step Returns
	Weighted Multi-step Returns
	-Returns

	Confidence-based Returns
	Definition
	Modelling Confidence
	Maintaining State-Visit Counts

	Experimental Setup
	Using Weighted Multi-step Returns in A3C
	Computing the TD-target
	Preprocessing function g
	Additional Tricks
	Algorithms Overview

	Results
	Gameplay Performance
	Without Confidence Decay
	With Confidence Decay

	Conclusion and Future Work

