
Deep Counterfactual Regret Minimization

Noam Brown∗

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213
noamb@cs.cmu.edu

Adam Lerer∗
Facebook AI Research
New York, NY 10003
alerer@fb.com

Sam Gross
Facebook AI Research
New York, NY 10003
sgross@fb.com

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

sandholm@cs.cmu.edu

Abstract

Counterfactual Regret Minimization (CFR) is the leading al-
gorithm for solving large imperfect-information games. It
iteratively traverses the game tree in order to converge to
a Nash equilibrium. In order to deal with extremely large
games, CFR typically uses domain-specific heuristics to sim-
plify the target game in a process known as abstraction. This
simplified game is solved with tabular CFR, and its solution
is mapped back to the full game. This paper introduces Deep
Counterfactual Regret Minimization (Deep CFR), a form of
CFR that obviates the need for abstraction by instead using
deep neural networks to approximate the behavior of CFR
in the full game. We show that Deep CFR is principled and
achieves strong performance in large poker games. This is
the first non-tabular variant of CFR to be successful in large
games.

Introduction
Imperfect-information games model strategic interactions
between multiple agents with only partial information. They
are widely applicable to real-world domains such as nego-
tiations, auctions, and cybersecurity interactions. Typically
in such games, one wishes to find an approximate equilib-
rium in which no player can improve by deviating from the
equilibrium.

The most successful family of algorithms for imperfect-
information games have been variants of Counterfactual Re-
gret Minimization (CFR) (Zinkevich et al. 2007). CFR is
an iterative algorithm that converges to a Nash equilibrium
in two-player zero-sum games. Forms of tabular CFR have
been used in all recent milestones in the benchmark do-
main of poker (Bowling et al. 2015; Moravčı́k et al. 2017;
Brown and Sandholm 2017). In order to deal with extremely
large imperfect-information games, abstraction is typically
used to simplify a game by bucketing similar states together
and treating them identically. The simplified (abstracted)
game is approximately solved via tabular CFR. However,
constructing an effective abstraction requires extensive do-
main knowledge and the abstract solution may only be a
coarse approximation of a true equilibrium.
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In constrast, reinforcement learning has been successfully
extended to large state spaces by using function approxima-
tion with deep neural networks rather than a tabular rep-
resentation of the policy (deep RL). This approach has led
to a number of recent breakthroughs in constructing strate-
gies in large MDPs (Mnih et al. 2015) as well as in zero-
sum complete-information games such as Go (Silver et al.
2017b; 2017a)1. Importantly, deep RL can learn good strate-
gies with relatively little domain knowledge for the specific
game (Silver et al. 2017b). However, most popular RL al-
gorithms do not converge to good policies (equilibria) in
imperfect-information games in theory or in practice.

Rather than use tabular CFR with abstraction, this paper
introduces a form of CFR, which we refer to as Deep Coun-
terfactual Regret Minimization, that uses function approxi-
mation with deep neural networks to approximate the behav-
ior of tabular CFR on the full, unabstracted game.

Notation and Background
In an imperfect-information extensive-form (that is, tree-
form) game there is a finite set of players, P . A node (or his-
tory) h is defined by all information of the current situation,
including private knowledge known to only one player.A(h)
is the actions available in a node and P (h) is the unique
player who acts at that node. If action a ∈ A(h) leads from
h to h′, then we write h·a = h′.H is the set of all node in the
game tree. Z ⊆ H are terminal nodes for which no actions
are available. For each player p ∈ P , there is a payoff func-
tion up : Z → R. In this paper we assume P = {1, 2} and
u1 = −u2 (the game is two-player zero-sum). We denote
the range of payoffs in the game by ∆.

Imperfect information is represented by information sets
(infosets) for each player p ∈ P . For any infoset I belonging
to p, all nodes h, h′ ∈ I are indistinguishable to p. More-
over, every non-terminal node h ∈ H belongs to exactly
one infoset for each p. We represent the set of all infosets
belonging to p where p acts by Ip.

A strategy (or policy) σ(I) is a probability vector over
actions for acting player p in infoset I . The probability of
a particular action a is denoted by σ(I, a). Since all states

1Deep RL has also been applied successfully to some partially
observed games such as Doom (Lample and Chaplot 2017), as long
as the hidden information is not too strategically important.



in an infoset belonging to p are indistinguishable, the strate-
gies in each of them must be identical. We define σp to be a
strategy for p in every infoset in the game where p acts. A
strategy profile σ is a tuple of strategies, one for each player.
The strategy of every player other than p is represented as
σ−p. up(σp, σ−p) is the expected payoff for p if all players
play according to the strategy profile 〈σp, σ−p〉.
πσ(h) = Πh′·avhσP (h′)(h

′, a) is the probability h is
reached if all players play according to σ. πσp (h) is the con-
tribution of p to this probability (that is, the probability of
reaching h if chance and all players other than p always
choose actions leading to h, but p plays according to σp).
πσ−p(h) is the contribution of chance and all players other
than p (that is, the probability of reaching h if p chooses ac-
tions leading toward h, but chance and all players other than
p play according to σ−p). πσ−p(I) =

∑
h∈I π

σ
−p(h) is the

probability of reaching I if p chooses actions leading toward
I , but chance and all players other than p play according to
σ−p.

A best response to σp is a strategy BR(σp) such that
up
(
σp, BR(σp)

)
= maxσ′−p ui(σp, σ

′
−p). A Nash equilib-

rium σ∗ is a strategy profile where everyone plays a best
response: ∀p, up(σ∗p, σ

∗
−p) = maxσ′p up(σ

′
p, σ
∗
−p) (Nash

1950). The exploitability e(σp) of a strategy σp in a two-
player zero-sum game is how much worse it does versus a
best response compared to a Nash equilibrium strategy. For-
mally, e(σp) = up

(
σ∗p , BR(σ∗p)

)
− up

(
σp, BR(σp)

)
. We

measure total exploitability
∑
p∈P e(σp).

Counterfactual Regret Minimization (CFR)
CFR is an iterative algorithm that maintains a regret value
(defined later) for each action in each infoset, and uses those
values to define a strategy for each player on each iteration.
Based on those strategies, CFR updates the regret values.

The expected value (or simply value) to p at node h given
that all players play according to strategy profile σ from that
point on is defined as vσp (h). The value to p at infoset I
where p acts is the weighted average of the value of each
node in the infoset, where the weight is proportional to p’s
belief that they are in that node conditional on knowing they
are in I . Formally, vσ(I) =

∑
h∈I

(
πσ−p(h|I)vσp (h)

)
and

vσ(I, a) =
∑
h∈I

(
πσ−p(h|I)vσp (h · a)

)
where πσ−p(h|I) =

πσ−p(h)

πσ−p(I)
.

Let σt be the strategy profile on iteration t. The instan-
taneous regret rt(I, a) of player p = P (I) for action a in
infoset I on iteration t is how much better off p would have
been for choosing action a with 100% probability (and play-
ing according to σt thereafter) rather than playing according
to σt in I , weighed by the probability that p would have
reached I if he tried to do so that iteration. Formally,

rt(I, a) = πσ
t

−p(I)
(
vσ

t

(I, a)− vσ
t

(I)
)

(1)
Furthermore, the regret on iteration T is
RT (I, a) =

∑T
t=1 r

t(I, a). Additionally, RT+(I, a) =

max{RT (I, a), 0} and RT (I) = maxa{RT (I, a)}.
Regret for p in the entire game is RTp =

maxσ′p
∑T
t=1

(
up(σ

′
p, σ

t
−p)− up(σtp, σt−p)

)
.

CFR determines an iteration’s strategy by applying any of
several regret minimization algorithms to each infoset (Lit-
tlestone and Warmuth 1994; Chaudhuri, Freund, and Hsu
2009). Typically, regret matching (RM) is used as the regret
minimization algorithm within CFR due to RM’s simplicity
and lack of parameters (Hart and Mas-Colell 2000).

In RM, a player picks a distribution over actions in an
infoset in proportion to the positive regret on those actions.
Formally, on each iteration t+ 1, p selects actions a ∈ A(I)
according to probabilities

σt+1(I, a) =
Rt+(I, a)∑

a′∈A(I)R
t
+(I, a′)

(2)

If
∑
a′∈A(I)R

t
+(I, a′) = 0 then any arbitrary strategy may

be chosen. Typically each action is assigned equal probabil-
ity, but in this paper we choose the action with highest regret
with probability 1, which empirically helps RM better cope
with approximation error.

If a player plays according to regret matching in in-
foset I on every iteration, then on iteration T , RT (I) ≤
∆
√
|A(I)|

√
T (Cesa-Bianchi and Lugosi 2006). If a player

plays according to CFR on every iteration, then RTp ≤∑
I∈Ip R

T (I). So, as T →∞,
RTp
T → 0.

The average strategy σ̄Tp (I) for an infoset I on iteration T

is σ̄Tp (I) =
∑T
t=1

(
πσ
t

p (I)σtp(I)
)

∑T
t=1 π

σt
p (I)

.

In two-player zero-sum games, if both players’ aver-

age regret satisfies
RTp
T ≤ ε, then their average strategies

〈σ̄T1 , σ̄T2 〉 form a 2ε-Nash equilibrium (Waugh 2009). Thus,
CFR constitutes an anytime algorithm for finding an ε-Nash
equilibrium in two-player zero-sum games.

In practice far better performance is achieved by alter-
nating which player updates their regrets on each iteration
rather than updating the regrets of both players simultane-
ously each iteration.

Linear CFR
There exist a number of variants of CFR that achieve much
faster performance. Until recently, CFR+ was the fastest
and most popular variant (Tammelin et al. 2015). However,
CFR+ does not handle variance well and is therefore difficult
to use with sampling and function approximation (Schmid et
al. 2018). In this paper we use Linear CFR (LCFR), a new
variant of CFR that is faster than CFR+ in certain settings
(particularly in settings with wide distributions in payoffs)
even without sampling, and which tolerates error far better
than CFR+ (Brown and Sandholm 2019). LCFR is identical
to CFR, except iteration t is weighed by t. Formally, regret
is defined as

RT (I, a) =

T∑
t=1

(
trt(I, a)

)
(3)

and the average strategy is defined as

σ̄Tp (I) =

∑T
t=1

(
tπσ

t

p (I)σtp(I)
)∑T

t=1

(
tπσtp (I)

) (4)



We will use these definitions for regret and average strategy
throughout the paper. Alternating updates with LCFR is in
practice two orders of magnitude faster than vanilla CFR in
large benchmark games.

Related Work
CFR is not the only iterative algorithm capable of solving
large imperfect-information games. In addition to first-order
methods, there exist algorithms such as Fictitious Play that
converge to an equilibrium solution. Neural Fictitious Self
Play (NFSP) (Heinrich and Silver 2016) previously com-
bined deep learning function approximation with Fictitious
Play to produce an AI for limit Texas hold’em, a large
imperfect-information game. However, Fictitious Play has
weaker theoretical convergence guarantees than CFR, and
in practice converges far slower. NFSP has not been shown
to be competitive with CFR-based approaches. Model-free
policy gradient algorithms have been shown to minimize re-
gret when parameters are tuned appropriately (Srinivasan et
al. 2018) but the performance of these algorithms is compa-
rable to NFSP. First-order methods converge to a Nash equi-
librium in O(1/T ) (Hoda et al. 2010; Kroer et al. ), which is
far better than CFR’s theoretical bound of O(1/

√
T ). How-

ever, in practice the fastest variants of CFR are substantially
faster than the best first-order methods. Moreover, CFR is
more robust to error and therefore likely to do better when
combined with function approximation.

Past work has investigated using deep learning to esti-
mate values at the depth limit of a subgame in imperfect-
information games (Moravčı́k et al. 2017). However, tabu-
lar CFR was used within the subgames themselves. Large-
scale function approximated CFR has also been developed
for single-agent settings (Jin, Levine, and Keutzer 2017).
Our algorithm is intended for the multi-agent setting and is
very different from the one proposed for the single-agent set-
ting.

Prior work has combined regression tree function approx-
imation with CFR (Waugh et al. 2015) in an algorithm called
Regression CFR (RCFR). This algorithm defines a number
of features of the infosets in a game and calculates weights
to approximate the regrets that a tabular CFR implementa-
tion would produce. However, RCFR uses full traversals of
the game tree (which is infeasible in large games), a set of
pre-defined features, and has only been tested on toy games.
It is therefore best viewed as a proof of concept that function
approximation can be applied to CFR.

Concurrent work has also investigated a similar combi-
nation of deep learning with CFR, in an algorithm referred
to as Double Neural CFR (Authors 2018). However, the au-
thors consider only small games (thousands of nodes) that
can be modeled exactly by a neural network, whereas we
are interested in using function approximation to improve
the sample complexity of large games (billions to trillions
of nodes) by generalizing across infosets using a model that
has much fewer parameters than there are infosets. There
are important differences between our approaches in how
training data is collected and how the behavior of CFR is
approximated.

Description of the Deep Counterfactual Regret
Minimization Algorithm

In this section we describe a way to approximate Linear
CFR using deep learning function approximation. The goal
of Deep CFR is to approximate the behavior of Linear CFR
while avoiding full traversals of the game tree. To begin, we
define the instantaneous advantage dt(I, a) of an action as
dt(I, a) = vσ

t

(I, a) − vσt(I) and the advantage DT (I, a)
as regret (as defined in Equation 3) divided by the total lin-
ear reach

∑T
t=1

(
tπσ

t

−p(I)
)

of the infoset. That is,

DT (I, a) =
RT (I, a)∑T
t=1

(
tπσ

t

−p(I)
) (5)

Since total linear reach is identical for all actions in an in-
foset, the formula for RM given in equation (2) can be re-
stated as

σt+1(I, a) =
Dt(I, a)+∑

a′∈A(I)D
t(I, a′)+

(6)

At a high level, Deep CFR trains a value network f : I →
R|A| on each iteration t defined by parameters θtp. This net-
work takes as input a description of an infoset and outputs an
estimate of the advantage for each action in the infoset. This
output vector is denoted by D̂t(I) and the prediction of the
advantage for action a specifically is denoted by D̂t(I, a).
Ideally, D̂t(I, a) ≈ Dt(I, a). This allows Deep CFR to ap-
proximate the behavior of RM to produce strategy σt+1(I)
for infoset I on iteration t+1. In order to conduct alternating
updates in which only one player’s strategy changes on each
iteration, Deep CFR maintains a separate set of parameters
θtp for each player p. We choose to predict advantages rather
than regrets to allow the network to better generalize among
strategically similar situations that differ only in how often
they are reached during play.

The training data for the network is a set of sampled
infoset advantages from iterations 1 through t stored in a
buffer Bvp for player p. We choose our mechanism for col-
lecting samples based on two desirable goals. First, the num-
ber of samples for infoset I in Bvp should, in expectation,
be proportional to the total linear reach

∑T
t=1

(
tπσ

t

−p(I)
)

of
the infoset. This focuses the network on infosets that have
relatively larger regret and are therefore more “important”.
Second, the samples for infoset I action a should, in expec-
tation, be equal to the true advantage Dt(I, a) of the action.

To achieve these goals, Deep CFR conducts a constant
number K of partial traversals of the game tree on each it-
eration, with the path of the traversal determined according
to external sampling. In external sampling, the traversal ex-
plores all actions in the traversing player’s infosets while
sampling a single action in opponent infosets and chance
nodes. When a terminal node is reached, the value is passed
back up. In chance and opponent infosets, the value of the
sampled action is passed back up unaltered. In traverser in-
fosets, the value passed back up is the weighted average of
all action values, where action a’s weight is σt(I, a). This



produces samples of this iteration’s contribution to the ad-
vantages for the actions in various infosets I . These sam-
ples are added to the buffer, using reservoir sampling (Vitter
1985) if capacity is exceeded, and a new network is trained
to determine parameters θt by minimizing MSE between
the predicted advantage D̂t(I, a) and the samples D̃t(I, a)
drawn from the buffer. Critically, because advantages are the
weighted average over all previous iterations, once a sample
is added to the buffer it is never removed (except through
reservoir sampling), even when the next CFR iteration be-
gins. However, in order to mimic the linear weighting com-
ponent of Linear CFR, samples from iteration t are weighed
by b(t + 1)/2c rather than all samples in the buffer being
weighed equally. While we use MSE as the loss, any Breg-
man divergence loss is acceptable.

While almost any sampling scheme is acceptable so long
as the samples are weighed properly, external sampling has
the convenient property that it achieves both of our desired
goals by assigning all samples in an iteration equal weight.
Additionally, exploring all of a traverser’s actions helps re-
duce variance. However, external sampling may be imprac-
tical in games with extremely large branching factors, so a
different sampling scheme may be desired in those cases.

In addition to the value network, a separate policy net-
work g : I → R|A| approximates the average strategy at
the end of the run, because it is the average strategy played
over all iterations that converges to a Nash equilibrium. To
do this, we maintain a separate buffer Bsp of sampled infoset
probability vectors for each player p. Whenever an infoset
I belonging to player p is traversed during a player 1 − p
traversal of the game tree via external-sampling, the infoset
probability vector σt(I) is added to Bsp and assigned weight
t.

Theorem 1 states that if the buffers used in Deep CFR are
infinitely large, we conduct an infinite number of traversals
to collect data, and our function approximator achieves the
minimum possible error on the value network and the min-
imum possible error on the policy network, then Deep CFR
perfectly mimcs Linear CFR.
Theorem 1. Assume Deep CFR conducts K traversals on
each iteration of CFR, the value network and policy network
buffers are infinitely large, and the function approximator
achieves the minimum possible error on the value network
and the policy network. Then as K →∞, Deep CFR’s con-
vergence bound approaches the convergence bound of Lin-
ear CFR.

Experimental Setup
We measure the performance of Deep CFR (Algorithm 1)
in approximating an equilibrium in heads-up flop hold’em
poker (FHP). FHP is a large game with over 1011 nodes and
108 infosets. In contrast, the network we use has 99,972 pa-
rameters. FHP is similar to heads-up no-limit Texas hold’em
(HUNL) poker, but has only two betting rounds rather than
four, and all bets and raises must be equal to the size of the
pot. The rules for FHP are given in Appendix .

We also measure performance relative to domain-specific
abstraction techniques in the benchmark domain of HUNL

Algorithm 1 Deep Counterfactual Regret Minimization

Br0 = ∅, Br1 = ∅, Bs = ∅
for p = 1..2 do

Initialize θ0p so that f(I, a|θ0p) = 0 for all I and all a
for t = 1..Niter do

p← t % 2
for n = 1..Ntraversal do

COLLECTSAMPLES(∅, p, θt−10 , θt−11 , Brp, B
s)

θtp ← TRAINNETWORK(Brp, 0) . Retrain the value
network incorporating newly collected data

θt1−p ← θt−11−p . We update only one player’s value
network per iteration
θ(s) ← TRAINNETWORK(Bs, 1) . Train the final
average strategy
return θ(s)

Algorithm 2 Sample Collection Traversal

function COLLECTSAMPLES(h, p, θ0, θ1, Brp, B
s)

if h is terminal then
return up(h) . Return the traverser’s payoff

else if P (h) = p then . If it’s the traverser’s turn to
act

σ(I)← CALCULATE-STRATEGY(I(h), θp) .
Compute infoset action probabilities

v ← 0
for a ∈ A(h) do

v(a) ← COLLECTSAMPLES(h ·
a, p, θ0, θ1, B

r
p, B

s) . Traverse each action
v ← v + σ(I, a) · v(a) . Update the expected

value
for a ∈ A(h) do

d̃(I, a)← v(a)− v
Add {(I, d̃(I), t)} to Brp . Add vector of action

advantages to buffer
else if P (h) = 1− p then . If it’s the opponent’s

turn to act
σ(I)← CALCULATE-STRATEGY(I(h), θ1−p) .

Compute infoset action probabilities
Add {(I, σ(I), t)} to Bs . Add vector of action

probabilities to buffer
a ∼ σ(I) . Sample an action from the probability

distribution
return COLLECTSAMPLES(h ·

a, p, θ0, θ1, B
r
p, B

s)
else . h is a chance node

a ∼ σ(h) . Sample a chance outcome
return COLLECTSAMPLES(h ·

a, p, θ0, θ1, B
r
p, B

s)



Algorithm 3 Infoset Strategy Computation

function CALCULATE-STRATEGY(I, θp) . Calculates
strategy based on predicted advantages

sum← 0
D̂(I)← f(I|θp) . Estimate vector of advantages
for a ∈ A(I) do

sum← sum + max{0, D̂(I, a)}
if sum > 0 then . Apply Regret Matching

for a ∈ A(I) do
σ(I, a)← max{0,D̂(I,a)}

sum

else . Choose the highest-advantage action
for a ∈ A(I) do

σ(I, a)← 0

σ(I, arg maxa{D̂(I, a)}) = 1

return σ(Ii)

Algorithm 4 Network Training

function TRAINNETWORK(B,S)
Initialize θ randomly.
for b = 1..Ntrain do

for i = 1..Nbatch do
(Ii, yi, ti) ∼ B . sample an infoset, action

pair from the buffer
ẑ ← f(Ii|θ) . predict regret or strategy vector
if S then

for a ∈ A do
ŷi,a ← eẑa∑

a′ e
ẑ
a′

. apply softmax if
computing strategy vector

else
ŷi ← ẑ

L ←
∑Nbatch

0 ti(yi − ŷi)2
θ ← StepAdam(θ,∇θL)

return θ

poker, which has about 10161 infosets. A standard approach
to developing an AI for such large imperfect-information
games is to first limit the action space to a small discrete
number and solve the coarsened version of the game. This
solution is referred to as the blueprint strategy (Brown and
Sandholm 2017; Brown, Sandholm, and Amos 2018). Then,
real-time solving is applied on top of the blueprint strategy to
calculate responses to actions not included in the blueprint.
Real-time solving is beyond the scope of this paper, so
we simply compare the performance of a blueprint strat-
egy computed with traditional information-abstraction tech-
niques (Johanson et al. 2013; Ganzfried and Sandholm 2014;
Brown, Ganzfried, and Sandholm 2015) to one computed
with Deep CFR. The blueprint version of HUNL we test on
requires all bets and raises to be equal to the size of the pot.
This blueprint game has over 1015 nodes and over 1012 in-
fosets.

Network Architecture
We use the neural network architecture shown in Figure ??
for both the network that computes infoset and action val-
ues for each player and the network that approximates the
average strategy at the end of MC-CFR. This network has
a depth of 7 layers and 99,972 parameters. Infosets consist
of sets of cards and bet history. The cards are represented
as the sum of three embeddings: a rank embedding (1-13),
a suit embedding (1-4), and a card embedding (1-52). These
embeddings are summed for each set of permutation invari-
ant cards (hole, flop, turn, river), and these are concatenated.
In each round of betting we specify a maximum number
of sequential actions, leading to NroundsNseq−actions total
unique betting positions. Each betting position is encoded
by three numbers: the first number is binary and denotes if
a bet was made; the second denotes the size of the bet; the
third denotes if this is the current betting position.

The neural network model begins with separate branches
for the cards and bets, with three and two layers respec-
tively. Features from the two branches are combined and
three additional fully connected layers are applied. Each
fully-connected layer consists of xi+1 = ReLU(Ax[+x]).
The optional skip connection [+x] is applied only on layers
that have equal input and output dimension. Normalization
(to zero mean and unit variance) is applied to the last-layer
features of each position. The network architecture was not
highly tuned, but normalization and skip connections were
used because they were found to be important to encourage
fast convergence when running preliminary experiments on
pre-computed equilibrium strategies in FHP.

Model training
The value model is trained from scratch each CFR itera-
tion, starting from a random initialization. We perform 4,000
mini-batch SGD iterations using a batch size of 10,000
and perform parameter updates using the Adam optimizer
(Kingma and Ba 2014) with a learning rate of 0.001, with
gradient norm clipping to 12.

2For HUNL we use 32,000 SGD iterations and a batch size of
20,000.



Figure 1: The neural network architecture used for Deep CFR.
The network takes an infoset (observed cards and bet history) and
outputs values (advantages or probability logits) for each possible
action.

We allocate a maximum size of 40 million infosets to each
player’s value buffer Bvp and the strategy buffer Bs. Once a
buffer is full it is updated via reservoir sampling, maintain-
ing a uniform distribution over infoset values from all prior
iterations. We record the iteration at which each sample was
collected to weight the training loss for linear CFR.

Experimental Results
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Figure 2: Comparison of Deep CFR with domain-specific abstrac-
tions in FHP. Coarser abstractions converge faster but are more
exploitable. Deep CFR converges with 1-2 orders of magnitude
fewer samples than a lossless abstraction, and performs competi-
tively with a 30,000 bucket abstraction. fast and slow Deep CFR
curves use 30,000 and 2,000,000 CFR traversals per step, respec-
tively.

Figure ?? compares the performance of Deep CFR to
variously-sized domain-specific abstractions. The abstrac-
tions are solved using external-sampling Linear Monte Carlo
CFR (Lanctot et al. 2009; Brown and Sandholm 2019),
which is the state of the art algorithm in this setting. The
30,000 bucket run means that the 25,989,600 different poker
hands on the second betting round were clustered into
30,000 buckets, where the hands in the same bucket are
treated identically. This bucketing is done using K-means
clustering on domain-specific features. Lossless abstraction
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Figure 3: Left: FHP convergence for different numbers of train-
ing data collection traversals per simulated LCFR iteration. Right:
FHP convergence using different numbers of minibatch SGD up-
dates per simulated LCFR iteration to train the advantage model.
We also compare to tabular unsampled Linear CFR.

only buckets together poker hands that are strategically iso-
morphic (e.g., flushes that differ only by suit), so a solution
to this abstraction maps to a solution in the full game without
error. This results in 1,286,792 buckets.

The figure shows that Deep CFR’s performance, mea-
sured by number of nodes visited, is comparable to the ab-
straction in which the 26 million different poker hands on
the flop are clustered into 30,000 buckets. Although perfor-
mance is comparable in terms of nodes touched, neural net-
work inference and training requires considerable overhead
that tabular CFR avoids. However, Deep CFR does not re-
quire advanced domain knowledge. We plot deep CFR per-
formance for both 30,000 (fast) and 2,000,000 (slow) CFR
traversals per step. Using a small number of CFR traver-
sals per step is more sample efficient but requires more CFR
steps and thus greater neural network training time.

Figure ?? shows the performance of Deep CFR for differ-
ent numbers sample-collecting traversals and different num-
bers of neural network training SGD steps, per CFR iter-
ation. Diminishing returns are observed in both cases. We
therefore observe there is a tradeoff between doing a small
number of highly accurate CFR steps (using a lot of data and
a large number of SGD steps) versus doing a larger number
of CFR steps that are more inaccurate. The optimal choice



ultimately depends on the desired accuracy and the cost of
training the network relative to conducting traversals of the
game tree.

Finally, we measure head-to-head performance in a vari-
ant of HUNL in which all bets and raises must equal the
size of the pot. We compare Deep CFR to a strategy in
which Monte Carlo CFR was run on an abstraction in which
on each betting round all the different poker hands were
bucketed into 200 buckets. Our Deep CFR agent ties the
abstraction-based strategy with a score of 3± 12 mbb/g.

Conclusions
We introduced a deep neural network implementation of
CFR that is theoretically principled and achieves strong per-
formance relative to domain-specific abstraction techniques
while not relying on advanced domain knowledge in large
poker games. This is the first non-tabular variant of CFR to
be successful in large games.
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K.; Munos, R.; and Bowling, M. 2018. Actor-critic pol-
icy optimization in partially observable multiagent environ-
ments. arXiv preprint arXiv:1810.09026.
Tammelin, O.; Burch, N.; Johanson, M.; and Bowling, M.
2015. Solving heads-up limit texas hold’em. In Proceed-
ings of the International Joint Conference on Artificial In-
telligence (IJCAI), 645–652.
Vitter, J. S. 1985. Random sampling with a reservoir. ACM
Transactions on Mathematical Software (TOMS) 11(1):37–
57.
Waugh, K.; Morrill, D.; Bagnell, D.; and Bowling, M. 2015.
Solving games with functional regret estimation. In AAAI
Conference on Artificial Intelligence (AAAI).
Waugh, K. 2009. Abstraction in large extensive games. Mas-
ter’s thesis, University of Alberta.
Zinkevich, M.; Johanson, M.; Bowling, M. H.; and Piccione,
C. 2007. Regret minimization in games with incomplete
information. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS), 1729–1736.


