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Abstract

Heterogeneous knowledge naturally arises among differ-
ent agents in cooperative multiagent reinforcement learning
(MARL). Existing works have demonstrated that peer-to-peer
knowledge transfer, a process referred to as teaching, accel-
erates individual learning speed and improves team-wide per-
formance. Similar to recent learning to teach frameworks,
we aim to learn teaching policies that decide when and what
to advise to a teammate. In this work, we introduce a new
learning to teach framework, called Hierarchical Multiagent
Teaching (HMAT). The proposed framework solves diffi-
culties faced by existing works when operating in domains
with long horizons, large state spaces, and continuous ac-
tions. HMAT transfers heterogeneous knowledge by taking
advantage of temporal abstractions of hierarchical reinforce-
ment learning and representations of a deep neural network.
Our empirical evaluations show that HMAT accelerates team-
wide learning progress in complex environments.

Introduction
Peer-to-peer knowledge transfer among different agents in
cooperative multiagent reinforcement learning (MARL) can
accelerate individual learning speed and improve team-wide
performance (Vrancx, De Hauwere, and Nowe 2011; Taylor
and Galvan-Lopez 2013; Garant, da Silva, and Lesser 2015;
da Silva, Glatt, and Costa 2017; Omidshafiei et al. 2018).
This improvement primarily results from the fact that agents
can obtain specialized skill knowledge by visiting local
states and then pass on that knowledge to uninformed team-
mates, a process referred to here as teaching.

How can we obtain an effective teaching in MARL? In-
deed this is an open question, for even in the context of hu-
mans, determining what makes a teacher effective is subjec-
tive (Rockoff and Speroni 2011). We define effective teach-
ing as solving the problem of action advising: learning when
and what actions to advise to a teammate. Optimizing for
these two objectives is a complicated problem. An ideal
teaching framework requires an accurate estimate of a stu-
dent’s instantaneous learning progress. As noted in recent
works on learning to teach (Omidshafiei et al. 2018), this
estimate is difficult to obtain given that students can follow
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many different learning trajectories in arriving at final con-
verged policies. In addition, developing ground-truth data
for approximating student learning progress requires either
an oracle for the environment or a pre-trained expert, neither
of which may be available in practical settings. Similarly, de-
ciding advice is difficult because effective teachers must not
only advise their best action choices but also guide their stu-
dents to explore when necessary. Despite these difficulties,
significant progress has been made in the MARL commu-
nity on designing effective multiagent teaching frameworks
that encourage agents to learn from each others’ unique ex-
periences to accelerate the overall learning.

Previous work on action advising can be classified
into three categories: optimal-advising-, heuristics-, and
learning-based. The optimal-advising-based methods (Tay-
lor et al. 2014; Fachantidis, Taylor, and Vlahavas 2017) re-
quire the existence of an expert teacher (ground-truth advis-
ing knowledge). The heuristic-based teaching methods (da
Silva, Glatt, and Costa 2017) use various rules, such as the
state visit frequency to determine the advice to give. How-
ever, assuming ground-truth advising knowledge is often not
practical and developing heuristics for effective teaching is
rather subjective.

Learning-based approaches develop a more general and
reliable way to teach. A noticeable example is the LeCTR
framework (Omidshafiei et al. 2018), which allows each
agent to learn when and what to advise, enabling signifi-
cantly faster learning progress. However, LeCTR was de-
signed to handle primitive action level advising and thus
could only be applied to domains with discrete action and
state spaces (similar to most other works on teaching for
MARL). With delayed reward assignment, primitive action-
based methods are usually difficult to scale for domains with
long horizons and can cost a significant amount of expenses
for advising. Moreover, LeCTR only considered tasks for
which shallow policy representations (tabular, tile-coding)
are efficient. However, it is well known that these shal-
low policy representations do not scale to continuous ac-
tion spaces due to the curse of dimensionality (Sutton and
Barto 1998). Although one might conjecture that the sec-
ond issue can be addressed by using deep neural network
(DNN) policy representations, training DNNs introduces a
more difficult credit assignment dilemma: identifying which
portions of teacher advice led to successful student learning



is difficult when randomly sampling experiences from a re-
play memory and performing batch updates. Hence, LeCTR
cannot be easily adapted to domains requiring DNN policy
representations.

To solve difficulties faced by existing methods for learn-
ing to teach in MARL when operating in domains with
long horizons, large state spaces, and continuous actions,
we propose a new framework called Hierarchical Multi-
agent Teaching (HMAT). The new framework is created
by using an improved teacher reward function that enables
HMAT to employ DNN based policy representations and
provides a more accurate estimate of a student’s learning
progress than teacher reward functions in previous frame-
works (Omidshafiei et al. 2018). HMAT also utilizes a
hierarchical learning formulation (Kulkarni et al. 2016;
Bacon, Harb, and Precup 2017; Vezhnevets et al. 2017;
Nachum et al. 2018) in order to efficiently learn and transfer
knowledge in more complex domains. To our knowledge,
HMAT is the first framework to take advantage of tempo-
ral abstractions to transfer high-level actions (or sub-goals)
amongst cooperative agents in a learning-to-teach setting.
Our experiments show that HMAT accelerates student learn-
ing in multiple environments as compared to related base-
lines.

Background
This work considers a cooperative MARL setting in which
agents jointly interact in the environment and receive a
shared team reward. This setting can be formalized as a par-
tially observable Markov game (Littman 1994), defined by
〈I,S,A,O, T , γ〉, where I is a set of N agents, S is a set
of states, A = 〈A1, A2, . . . , AN 〉1 is a set of action sets for
all N agents, and O = 〈O1, O2, . . . , ON 〉 is a set of ob-
servations for all N agents. Each agent i executes an action
according to its stochastic policy πθi : Oi × Ai 7→ [0, 1],
which yields the next state by the state transition func-
tion T : S × A 7→ S . Each agent i obtains a reward
ri : S ×Ai 7→ R, and receives an observation oi : S 7→ Oi.
Each agent i has an objective to maximize its total expected
return Ri = E[

∑
t γ

trit], where γ ∈ [0, 1) is the discount
factor. The cooperative setting is a specialized case of the
Markov games with a shared team reward.

Off-Policy Deterministic Policy Gradient
The off-policy deterministic policy gradient (DPG) (Silver et
al. 2014) is an RL framework for continuous action spaces.
Deep deterministic policy gradient (DDPG) (Lillicrap et al.
2015) expands DPG by using DNNs to approximate the ac-
tor and the critic. DDPG also samples experiences from a re-
play memoryD and uses a target network, as in DQN (Mnih
et al. 2015a). In our work, we utilize TD3 (Fujimoto, van
Hoof, and Meger 2018), a variant of DDPG that addresses
the overestimation issue of DPG. TD3 involves a determin-
istic policy µθ (i.e., µθ : S 7→ A) and two critics, Qθ1 and

1Superscript denotes a property for an agent (e.g., an action set
for agent 1: A1), Additionally, a bold symbol represents a set in-
cluding N agents’ property.

Qθ2 . Critics minimize the following loss:

L =
∑2

i=1
Es,a,r,s′∼D

(
y −Qθi(s, a)

)2
y = r + γ min

j=1,2
Qθ

′
j (s′, µθ′(s

′) + ε)
(1)

where θ′, θ′1, and θ′2 are the target network parameters; and
ε ∼ N (0, σ). The policy µθ is updated by:

∇θJ(θ) = E
s∼D

[
∇θµθ(a|s)∇aQθ1(s, a)|a=µθ(s)

]
(2)

In a MARL setting, the environment appears non-
stationary from the perspective of any agent because all
of the agents are simultaneously learning together (Omid-
shafiei et al. 2017). To address non-stationary issues in
MARL, recent works (Lowe et al. 2017; Foerster et al. 2017)
introduce the framework of centralized training (e.g., cen-
tralized critics) with decentralized execution (e.g., decentral-
ized actors). This paper adopts the same approach (central-
ized critics and the decentralized actors).

Hierarchical Reinforcement Learning
Hierarchical reinforcement learning (HRL) provides a struc-
tured framework with multi-level reasoning and extended
temporal abstraction (Kulkarni et al. 2016; Bacon, Harb, and
Precup 2017; Vezhnevets et al. 2017; Nachum et al. 2018).
HRL offers a benefit over non-hierarchical RL in solving
complex tasks. The closest HRL framework that we use in
this paper is that of (Nachum et al. 2018) with a two-layer
hierarchical structure: the higher-level policy (manager pol-
icy µM) and the lower-level policy (worker policy µW ).
The manager policy obtains an observation ot and plans a
high-level sub-goal gt ∼ µM(ot) for the worker policy. The
worker policy attempts to reach this sub-goal from current
state by executing a primitive action at ∼ µW(ot, gt) in the
environment. Following this, an updated sub-goal is gener-
ated by the manager every horizon h time steps2 and a se-
quence of primitive actions are executed by the worker. The
manager policy learns to accomplish a task by optimizing
the cumulative environment reward. By contrast, the worker
policy learns to reach the sub-goal by maximizing the cu-
mulative intrinsic reward. An example intrinsic reward can
be the negative distance between the current observation
and the sub-goal: rintrinsic

t = −||ot − gt||22, where ot and
gt can be (x, y) coordinate in a 2D environment. Lastly,
the manager stores an experience 〈ot, gt, rt:t+h−1, ot+h〉
every h time steps and the worker stores an experience
〈ot, at, rintrinsic

t , ot+1〉 every step.

Hierarchical Learning to Teach Overview
The previous work, LeCTR (Omidshafiei et al. 2018) estab-
lished a general learning to teach in a MARL framework, en-
abling the transfer of knowledge among cooperative, hetero-
geneous agents to accelerate team-wide learning progress.
Agents share knowledge via “teacher” policies that learn
when and what to advise fellow agents. This proposed work
explores a novel algorithm for learning high-level teacher

2Manager samples a sub-goal when t = nh with n=0,1,2,. . .



policies by introducing HRL and nonlinear function approx-
imators (e.g., deep neural networks) that scale up the LeCTR
approach to more difficult tasks involving continuous action
spaces. Before describing our framework in detail, we pro-
vide a high-level overview of the approach in this section.

Task-Level Learning Problem
Following the conventions from LeCTR (Omidshafiei et al.
2018), we consider a standard cooperative MARL setting
with two agents i and j in a shared environment. At each
learning iteration, agents interact with the environment, col-
lect experiences, and update their policies, µi and µj , with
learning algorithms, Li and Lj . The resulting policies learn
to coordinate and maximize final performance in the task.
This problem of learning task-related policies to coordinate
is referred to as the task-level learning problem PTask.

Hierarchical Task-Level Policy: In this work, we ex-
tend task-level policies with HRL. To this end, we replace
µi and µj with hierarchical policies consisting of manager
policies, µiM and µjM, and worker policies, µiW and µjW as
shown in Figure 1. Note that manager and worker policies
have different objectives. Manager policies learn to accom-
plish a task together by optimizing the cumulative environ-
ment reward. By contrast, worker policies are trained to suc-
cessfully reach sub-goals suggested by managers.

Here, we focus on transferring knowledge at the manager
policy level instead of the worker policy level since man-
ager policies represent abstract knowledge which is more
relevant to fellow agents. Therefore, hereafter we refer to
managers as the task-level polices. To simplify notation, the
manager subscriptM will often be omitted when discussing
task-level policies (e.g., µi = µiM, µ

j = µjM).
Knowledge Heterogeneity: During the task-level policy

learning, knowledge heterogeneity among agents is likely
to arise. This, for instance, occurs when an agent j enters
a foreign state its teammate i has already visited and mas-
tered. There are several likely causes for the existence of
knowledge heterogeneity in MARL. For one, the underlying
stochastic transition process naturally causes each agent to
explore a different section of the environment. As a result,
agents would contain unique experiences, develop differ-
ent skills, and accumulate heterogeneous knowledge. Addi-
tionally, varying prior experiences among agents may cause
knowledge heterogeneity.

Advice-Level Learning Problem
Throughout task-level policy learning, the ability for agents
to exchange their heterogeneous knowledge among team-
mates is likely to accelerate team-wide learning progress.
In this work, we consider sharing knowledge between task-
level policies via teacher policies which advise task-level
policies. Instead of using hand-crafted heuristics to advise,
we train teacher policies that learn when and what to advise.
Ideally, teacher policies should learn how to transform lo-
cal knowledge into appropriate advice such that team-wide
learning progress improves by following suggested advice.
A desirable teacher policy is also one which only instructs
when necessary and in a way to promote organic exploration

 

GOODBAD

Figure 1: Agents teach each other according to the advising
protocol. Knowledgeable agent i will evaluate the actions
agent j intended to take and will advise if necessary. Ad-
vising occurs between the teacher policy of one agent (e.g.,
µ̃i) and the manager policy of another (e.g., µjM). The com-
mon object they exchange is a sub-goal, which is fed to the
worker policy to follow.
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Figure 2: An example of task-level learning progress for
each session. Upon reaching completion of a pre-determined
episode count, task-level policies are re-initialized (teaching
session reset). With each new teaching session, the teacher
policies become better at advising students and thus result-
ing in task-level policies attaining faster learning progress.

so that task-level policies are able to succeed in the teacher’s
absence. Lastly, a teacher reward should accurately reflect
the amount that advice contributed to improving team-wide
learning progress. In (Omidshafiei et al. 2018), this problem
of learning teacher policies is referred to as the advice-level
learning problem, P̃Advise

3.
Advice Protocol: We describe how agents in HMAT in-

teract together with teacher policies, µ̃i and µ̃j . Consider
Figure 1, where agents are learning to coordinate with hier-
archical task-level policies (i.e., solving PTask) while advis-
ing one another via teacher policies (i.e., solving P̃Advise). In
our framework, there are two roles: the role of the student
agent j (i.e., an agent who’s manager policy receives ad-
vice) and the role of the teacher agent i (i.e., an agent whose
teacher policy gives advice). Agents i and j are able to teach
each other, but we only consider a one-way interaction in
Figure 1 for clarity. Here, the student j has decided that it
is appropriate to strive for sub-goal gj by querying its man-
ager policy. Before j passes the sub-goal gj to its worker,
i’s teaching policy checks j’s intended sub-goal and consid-
ers i and j’s heterogeneous knowledge at the task-level in

3(̃·) refers to a teacher policy property.



order to decide whether to advise or not. Having decided to
advise, i transforms its local knowledge into desirable sub-
goal advice via its teacher policy and suggests it to j. After
student j accepts the suggested advice from the teacher, the
updated sub-goal gj is now passed to j’s worker policy and
the worker policy executes an action aj .

Task-Level Problem vs Advice-Level Problem: We
summarize a few important differences between the task-
level problem PTask and the advice-level problem P̃Advise.

Firstly, the length of episodes in each are different. For
the task-level learning problem, an episode terminates ei-
ther when agents arrive at terminal states or a time step
t exceeds a maximum episode time step T . However, for
the advice-level problem, an episode ends when task-level
policies have converged, forming one “episode” for learn-
ing teaching policies. Upon completion of the advising-level
episode, task-level policies are re-initialized and training
proceeds for another advising-level episode. To avoid con-
fusion, we refer to an episode as one task-level problem
episode and a session as one advice-level problem episode
(Figure 2).

Secondly, the objectives of these two are also different.
The goal of the task-level learning is to coordinate and max-
imize the cumulative environment reward in an episode. On
the contrary, the goal of the advice-level learning is to maxi-
mize the cumulative teacher reward in a session, which cor-
responds to accelerating team-wide learning progress (i.e., a
maximum area under the learning curve in one session).

Lastly, task-level policies are inherently off-policy while
teacher policies are not necessarily off-policy. This is be-
cause task-level policies are updated by experiences affected
by teacher policies, instead of experiences generated by
task-level policies alone (i.e., behavior policy differs from
the target policy). Thus, we use an off-policy learning algo-
rithm (e.g., TD3 (Fujimoto, van Hoof, and Meger 2018)) to
learn task-level policies.

Limitation of Existing Teaching Works: A key lim-
itation of previous learning-to-teach frameworks, such as
LeCTR (Omidshafiei et al. 2018) is the difficulty to scale
to more complicated tasks (e.g., a task involving contin-
uous action spaces). Previous frameworks have developed
with task-level policies represented by look-up tables or tile-
codings in order to ease training stability of teacher poli-
cies. Stability of teachers is less of a concern in these cases
because the immediate teaching reward is more correlated
with TD errors obtained from the online update as opposed
to sampling from a replay memory or a batch update. As a
result, teacher reward assignment is accurate since the task
policy update uses the agent’s experience at t affected by
primitive action advice ãt, which then returns the teacher re-
ward r̃t that reflects how much ãt contributed to improving
the learning progress at t. However, this stability is achieved
with a consequence: tabular and tile-coding task policies are
vulnerable to the curse of dimensionality and thus can be
inefficient for solving tasks involving continuous actions.

Recently, RL with nonlinear function approximators (e.g.,
DNNs) has been applied to solve challenging tasks includ-
ing those with continuous actions (Lillicrap et al. 2016;
Duan et al. 2016). Although DNN policies can scale better

Algorithm 1 HMAT Pseudocode

Require: A maximum number of episodes in a session E
1: Initialize advice-level policy µ̃
2: for Teaching session s̃ = 1 do
3: Re-initialize task-level policy parameters µ
4: Re-initialize train episode count: e = 1
5: while e ≤ E do
6: E0:T , 〈õ0:T , g̃0:T 〉←Agents advise one another

during one episode (Phase I)
7: Update e: e← e+ 1
8: Copy temporary task-level policies: µtemp ← µ
9: Update µtemp: µ′temp ← LLL(µtemp,E0:T )

10: r̃,E0:Teval ← Get teacher reward by rolling out
for neval episodes (Phase II)

11: AddE0:T andE0:Teval to task-level memoriesD
12: Update e: e← e+ neval
13: Update µ by using samples inD (Phase III)
14: Add a teacher experience 〈õ0:T , g̃0:T , r̃, õ′0:T 〉 to

teacher memories D̃
15: Update µ̃ by using samples in D̃ (Phase IV)
16: end while
17: end for

than tabular or tile-coding policies, it is not trivial to directly
apply DNNs to existing teaching frameworks, especially be-
cause of the teacher reward assignment issue. DNN policies
often require a batch of experiences with random samples
for each update to stabilize learning (Mnih et al. 2015b).
As a result, given primitive action advice ãt, the DNN task
policies will update using a batch of experiences not only
affected by ãt but also advice suggested at previous times.
As a result, the teacher reward r̃t returned by task policies
after the update would not reflect well how much ãt was
responsible in improving the student’s learning progress at
time t. This teacher reward assignment issue is significant
because noisy or wrong estimate of teacher reward will lead
to wrong or diverging teacher policies. This challenge is not
addressed in previous teaching frameworks. We address the
issue in detail in the next section.

HMAT: Hierarchical Multiagent Teaching
This section summarizes the overall algorithm of our learn-
ing to teach framework, Hierarchical Multiagent Teach-
ing (HMAT), and explains remaining details about learning
teacher policies.

Overview of Algorithm
Agents in HMAT iterate over four phases to simultaneously
learn how to coordinate (i.e., solving PTask) and how to ad-
vise one another (i.e., solving P̃Advise):
• Phase I (Advising Phase): Agents advise one another us-

ing the advising protocol during one episode. This process
generates a batch of task-level experiences influenced by
the teachers’ advice.

• Phases II (Evaluation Phase): This phase evaluates and
estimates the amount that the teachers’ advice will con-



tribute to improving team-wide learning progress by using
a teacher reward function. As a result, this process yields
the teacher reward.

• Phase III (Task-Level Policy Update Phase): Task-level
policies are updated by randomly sampling experiences
from the task-level experience memories.

• Phase IV (Advice-Level Policy Update Phase): A
teacher experience that includes the teacher reward in
Phase II is added to the teacher-level experience memo-
ries. Then, by using experiences randomly sampled from
teacher memories, teacher policies are updated.

We explain each phase by demonstrating how issues specific
to learning teacher policies are addressed.

Teacher Policy Details
Resolving Teacher Reward Assignment Issue: Our
teacher policies require feedback (i.e., teacher reward) that
accurately reflects learning progress improvement by given
advice. However, with task-level policies represented by
DNNs, estimating a correct teacher reward when using batch
updates is difficult. To resolve this reward issue, we adopt
methods developed for learning a single agent exploration
policy (Xu et al. 2018) into our multiagent learning to teach
setting.

Specifically, we address the issue with the following
ideas. Firstly, a view of teacher policies is enlarged by
providing multiple advice g̃0:T 4 before updating task-
level policies. This contrasts to previous learning-to-teach
approaches, where task-level policies are updated based
on a single advice. As a result of providing multiple
advice g̃0:T , a batch of task-level experiences E0:T =
〈o0:T , g̃0:T , r0:T ,o′0:T 〉 are generated in the phase I and sat-
isfy the desirable batch update for DNNs.

Secondly, HMAT utilizes two separate task-level updates:
one update to accurately estimate teacher reward r̃ (phase
II) and the other update to efficiently train task-level poli-
cies (phase III). The former update includes copying cur-
rent task-level policies µ to temporary task-level policies,
µtemp. These temporary policies are updated a small num-
ber of steps by using E0:T : µ′temp ← LLL(µtemp,E0:T ). Then
a teacher reward function R̃ utilizes the updated temporary
policies and returns a teacher reward r̃ = R̃(µ′temp). Note
the temporary policies are used only to measure r̃ and then
discarded (i.e., copied again at next train iteration). On the
other hand, the latter update trains current task-level poli-
cies by randomly sampling experiences from the task-level
experience memories D. As a result, we can estimate the
contribution of g̃0:T to the learning progress improvement
but also use the advantages of the replay memory to sta-
bilize learning of task-level policies (Liu and Zou 2017;
Xu et al. 2018). In the analysis section, we empirically show
that these ideas result in the teacher reward, which closely
estimates the true learning progress.

Teacher Reward Function: Given the updated tempo-
rary policies µ′temp, the teacher reward function R̃ estimates

4g̃0:T = 〈g̃0, g̃h, g̃2h, . . . , g̃T 〉, where h is the manager hori-
zon and T is the maximum episode time step.

r̃ by executing the updated temporary policies for neval
episodes that equals to Teval steps (i.e., rollout data). This
process generates a batch of evaluation experiences E0:Teval ,
where r̃ is obtained by summing up rewards in the evalua-
tion batch. Note that the experiences are generated without
the teacher policies being involved, soE0:Teval evaluates how
students perform by themselves after one advising phase.

Teacher Policy Input and Output: A teacher policy
makes its decision, i.e., when/what to advise, based on
a teacher’s and a student’s heterogeneous knowledge. An
agent’s knowledge is represented by the policy parameters.
However, as task-level policies in our framework are DNNs
possibly with millions of parameters, it is not feasible to
learn over the parameter space. Instead, teacher policies
learn over teacher-level observations õt = 〈õit, õ

j
t 〉, selected

to compactly provide information about agents’ knowledge.
Our agents in HMAT can simultaneously advise one an-

other. For clarity, we detail a teacher policy’s input when
agents i and j are a teacher and student agent, respectively
(Figure 1). For agent i’s teacher policy, its observation õit
consists of:

õit = 〈ot, git, g
ij
t , Q

i(ot, g
i
t, g

j
t ), Q

i(ot, g
i
t, g

ij
t )︸ ︷︷ ︸

Teacher Knowledge

,

gjt , Q
j(ot, g

i
t, g

j
t ), Q

j(ot, g
i
t, g

ij
t )︸ ︷︷ ︸

Student Knowledge

, tremain〉
(3)

where t = nh with n = 0, 1, 2, . . . and the horizon h;
ot = 〈oit, o

j
t 〉; git ∼ µi(oit); g

j
t ∼ µi(ojt ); g

ij
t ∼ µi(ojt ); Q

i

and Qj are the centralized critic for agent i and j, respec-
tively; and tremain is the remaining iteration until current ses-
sion ends. Given an input õit, teacher i decides when/what
to advise: one action for deciding whether to or not to ad-
vise; the other action for sub-goal advice. Given no advice,
student j executes its originally intended sub-goal gjt .

Teacher Experience: With the enlarged teacher policy
perspective, we explain one teacher experience considering
teacher i for clarity. One teacher observation corresponds
to õi0:T , which consists of multiple õit. One teacher action
is advice g̃i0:T , and one next teacher observation can be ob-
tained by updating each õit in õi0:T with the updated tem-
porary policy µ′jtemp (thus, representing change in student
knowledge due to advice g̃i0:T ). Finally, with the measured
teacher reward r̃, one teacher experience corresponds to
〈õi0:T , g̃i0:T , r̃, õ′i0:T 〉. This experience can be stored in the
teacher replay memory D̃i and sampled to update teacher
policies (Phase IV).

Training Protocol
We utilize TD3 as our underlying RL algorithm for the
worker, manager, and teacher policies. We extend TD3 to
MARL settings and incorporate the multiagent actor-critic
approach (Lowe et al. 2017) into (1) and (2) to reduce the
non-stationary for manager and teacher policies. Note that
the manager critics and the teacher critics use experiences
sampled from different replay memories to update their pa-
rameters: manager critics sample fromD and teacher critics
sample from D̃. Pseudocode is presented in Algorithm 1.



Figure 3: Visualization of the cooperative one box domain.
The objective is to push the box O to the target ×. Agents i
and j have prior knowledge about how to attain the objec-
tive. After learning to coordinate, agent i is teamed up with
an agent k that has no knowledge about the domain. Agent i
teaches agent k to accelerate team-wide learning progress.

Figure 4: Visualization of the cooperative two box domain.
The goal is to move box1 (the left box) to the left target and
move box2 (the right box) to the right target. Agent pairs i−j
and k− l have prior knowledge about how to push box1 and
box2 to corresponding targets, respectively. Then, agents i
and k are teamed up. They teach one another to accelerate
team-wide learning progress.

Evaluation
In this section, we demonstrate the performance of our pro-
posed learning to teach framework, HMAT on a sequence
of increasingly challenging domains. Agents in these do-
mains have a heterogeneous knowledge and benefit from the
peer-to-peer knowledge transfer via teaching. Through em-
pirical evaluations, we show accelerated team-wide learning
progress with HMAT.

Evaluation Domain
Our domains are based on the OpenAI’s multiagent particle
environment, which supports continuous observation and ac-
tion space with basic simulated physics. We modify the en-
vironment and propose new domains, “cooperative one box
push” and a “cooperative two box push”, which exhibit hi-
erarchical structure tasks and require coordinating agents.

Cooperative One Box Push Domain: The domain con-
sists of one round box and two agents (Figure 3). The objec-
tive is to move the box to the target on the left side as soon as
possible. The box can be moved if and only if two agents act
on it together. This unique property requires the two agents
to coordinate. Note that the box has a round shape. There-
fore, agents are required to coordinate properly to move the
box straightly to the target. If one agent pushes harder than
the other agent, the box will follow a curved path taking a
longer time to reach to the target. Each agent can observe its
position, its speed, the position of the box, the position of the
target, and the other agent’s position. Each agent outputs two
forces between−1 and 1 and moves in the environment. The
domain returns a team reward:−||loc(Target)− loc(Box)||22.

The box and target reset at the same initial location but
agents reset at random locations.

Cooperative Two Box Push Domain: This domain is
similar to the one box domain but with increased complex-
ity. There are two round boxes in the domain Figure 4. The
objective is to move the left box (box1) to the left target
(target1) and the right box (box2) to the right target (target2).
The boxes still require two agents to act together. Addition-
ally, box1 and box2 have different mass: box2 is three times
heavier than box1. Each agent can observe its position, its
speed, the positions of the boxes, the positions of the targets,
and the other agent’s position. The domain returns a team
reward: −

{
||loc(Target1)− loc(Box1)||22 + ||loc(Target2)−

loc(Box2)||22
}

. The boxes and targets reset at the same initial
locations but agents reset at random locations.

Heterogeneous Knowledge and Teach Task
For each domain, we provide each agent with different
prior knowledge, ensure a heterogeneous knowledge be-
tween agents, and motivate interesting teaching scenarios.

Cooperative One Box Push Domain: Consider Fig-
ure 3. Agent i and j have prior knowledge about how to
move the box to the target. Then, agents i and k are teamed
up, and agent k has no knowledge about the domain. Agent i,
which understands how to move the box, should teach agent
k. By giving desirable advice, it will improve k’s learning
progress and results in moving the box together quickly.

Cooperative Two Box Push Domain: Consider Fig-
ure 4. Agents i and j have prior knowledge about how to
move box1 to target1. Agents k and l understand how to
move box2 to target2. Note that the former team and the lat-
ter team have two different skills as the skills involve mov-
ing boxes with different weights (light vs heavy) and also
in different directions (left vs right). Then, agents i and k
are teamed up. In this scenario, agent i should transfer its
knowledge about moving box1 to agent k. At the same time,
agent k should teach agent i how to move box2. Thus, there
is knowledge transfer both ways.

Implementation and Algorithm Details
Each policy’s actor and critic are two-layer feedforward neu-
ral networks, consisting of rectified linear unit (ReLU) acti-
vations and 400 nodes per layer. A final layer of tanh activa-
tion is used at the output of the actor policy. Since we focus
on teaching at the manager level, not at the worker level,
we pre-train and fix the worker policies by giving randomly
generated sub-goals, similar to (Kulkarni et al. 2016).

Baselines
We compare our framework to the following baselines,
which don’t include teaching:

MATD3 (Primitive): TD3 is extended to MARL set-
ting and the multi-agent actor-critic of (Lowe et al. 2017)
is added to reduce the non-stationary.

MATD3 (Hierarchical): The MATD3 (Primitive) base-
line is extended with HRL with the two-hierarchical struc-
ture, which consists of manager policies and worker poli-
cies. The manager policies’ actors are decentralized, but
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Figure 5: (a) Task-level learning progress in the one-box push domain. Agents in HMAT show accelerated team-wide learning
progress by agent i teaching agent k. (b) Task-level learning progress in the two-box push domain. Agents in HMAT show
accelerated team-wide learning progress by teaching one another. (c) Ground-truth learning progress vs estimated learning
progress. Our teacher reward function well estimates the true learning progress with a high correlation.

their critics are centralized to reduce the non-stationary. The
worker policies are pre-trained.

Results
The task-level learning progress on both domains are sum-
marized in Figure 5a and Figure 5b. The plots show a mean
and a standard deviation for 10 sessions. The oracle in the
figures refers to a maximum reward achieved by training
MATD3 (Hierarchical) baseline until it converges. There are
two consistent observations between the two results. One
observation is that agents in HMAT accelerate in learn-
ing progress. This empirically demonstrates the strength of
transferring heterogeneous knowledge between agents via
teaching. The other observation is that HRL-based methods
outperform the primitive method. This could have resulted
from the fact that the domains pose delayed reward assign-
ment. The one-box domain, for instance, returns the same
reward until the box is moved by two agents. Therefore, the
extended temporal abstraction provided by HRL would have
helped in learning.

We also have attempted to compare against LeCTR’s
Value Estimation Gain (VEG) reward, 1(V̂ (s) > τ), where
a teacher receives reward +1 if a student’s value estimate
is above a threshold τ and 0 otherwise. However, our pre-
liminary experiments did not show a significant task-level
learning progress using this reward. We conjecture that this
is due to the VEG being a binary teacher reward function,
where teachers may have to wait a long time before they
receive positive rewards and teacher policies may diverge
as a result, especially if a task is difficult. Thus, a different
choice of teacher reward function might be more appropriate
for LeCTR to operate in our domains.

Analysis of Teacher Reward Function
As noted earlier, developing ground-truth learning progress
of task-level policies often requires an expert policy or is

computationally undesirable (Graves et al. 2017). Thus, ex-
isting learning to teach frameworks and our framework use
an estimation of the learning progress as a teacher reward.
However, it is important to understand how close the esti-
mation is to the true learning progress. The goal of teacher
policies is to maximize the cumulative teacher reward, so a
wrong teacher reward that doesn’t estimate closely would re-
sult in learning undesirable teachers. In this section, we aim
to measure the differences between the true and estimated
learning progress and analyze our teacher reward function.

In imitation learning, with an assumption of a given ex-
pert, the true learning progress is measured by the distance
between an action by a learning agent and an optimal ac-
tion by an expert (Ross and Bagnell 2014; Daswani, Sune-
hag, and Hutter 2015). Similarly, we pre-train expert poli-
cies (MATD3 (Hierarchical)) and measure the true learn-
ing progress by the action differences. The comparison be-
tween the true and the estimated learning progress using our
teacher reward function is shown in Figure 5c. The Pear-
son correlation is 0.946, which empirically shows that our
teacher reward function well estimates the true signal.

Conclusion
We introduce Hierarchical Multiagent Teaching (HMAT),
a learning to teach framework, which utilizes hierarchi-
cal reinforcement learning and deep neural network repre-
sentation, to transfer heterogeneous knowledge in coopera-
tive MARL. We show agents in HMAT accelerate learning
progress in challenging domains. Future works include ex-
panding the framework to support the peer-to-peer teaching
with more than two agents involved.
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