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Games”*

Abstract

Nash equilibrium strategies have the known weakness that
they do not prescribe rational play in situations that are
reached with zero probability according to the strategies
themselves, for example, if players have made mistakes.
Trembling-hand refinements—such as extensive-form perfect
equilibria and quasi-perfect equilibria—remedy this problem
in sound ways. Despite their appeal, they have not received
attention in practice since no known algorithm for computing
them scales beyond toy instances. In this paper, we design an
exact polynomial-time algorithm for finding trembling-hand
equilibria in zero-sum extensive-form games. It is several or-
ders of magnitude faster than the best prior ones, numerically
stable, and quickly solves game instances with tens of thou-
sands of nodes in the game tree. It enables, for the first time,
the use of trembling-hand refinements in practice.

Introduction

Nash equilibrium (NE) (Nash 1950) is the most seminal so-
lution concept in game theory. However, in many games it is
too permissive, prescribing unsatisfactory strategies. In the
case of imperfect-information extensive-form games, one
limitation is that some NEs do not prescribe optimal play
after the player or the opponent has made a mistake. Other
issues are that some NEs may prescribe non-credible threats
or weakly dominated strategies.

Since the classic paper by Selten (1975), trembles have
played a crucial role in refining—that is, further curtailing—
the set of NEs, to address these issues. Intuitively, trem-
bles represent potential mistakes by the players. Refined
solutions then are limit points of NEs as the mistake prob-
abilities approach zero (different refinement concepts have
different additional constraints on the trembles, which we
will make specific in the next sections). The primary role
of trembles is to guarantee that the solutions are sequen-
tially rational (Kreps and Wilson 1982). The two most
famous trembling-hand solution concepts that refine NEs
while guaranteeing sequential rationality are quasi-perfect
equilibria (QPEs) (van Damme 1984) and extensive-form
perfect equilibria (EFPEs) (Selten 1975).! In a QPE, a

*Will appear at NIPS’18.
Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

'Proper equilibria (PEs), proposed by Myerson (1978), are a

player plays optimally at every information set taking into
account possible future mistakes of her opponent but assum-
ing that she will not make future mistakes. In an EFPE, a
player also takes her own possible future mistakes into ac-
count. Interestingly, EFPEs need not be a subset of QPEs:
the two sets can be disjoint (Hillas and Kohlberg 2002). (An
EFPE may prescribe the players to play weakly dominated
strategies, while a QPE never does.)

Sequential rationality guarantees that the strategies in
QPEs and EFPEs are optimal also in parts of the game
that are reached with zero probability in equilibrium. This
is important, for example, when playing against a hu-
man player, who is expected not to always play optimally.
No practically viable algorithm for computing trembling-
hand refinements in large imperfect-information games is
known. For instance, consider the recent milestone where
an Al, Libratus (Brown and Sandholm 2017b; 2017a;
2017c)—that was created automatically using equilibrium-
finding approaches—beat top human specialist profession-
als in heads-up no-limit Texas hold’em poker. The tech-
niques were based on approximating NE: no NE refinement
was used to capitalize on the opponent’s mistakes.

Sequential rationality should not be confused with the
concept of undominated strategy (van Damme 1987). Mil-
tersen and Sgrensen (2006, page 108) illustrate the weak-
ness of undominated Nash equilibria (UNEs) and their in-
ability to capitalize on mistakes compared to QPEs. In par-
ticular, UNEs do not preclude a player from hoping for a
“gift” (mistake) from the opponent. Poker illustrates this
problem well: only very few strategies are dominated since
there is often room for the opponent to make mistakes later.
In other words, while restricting to undominated strategies is
a step in the right direction, it does not rule out sequentially-
irrational behavior for either player. The solution concepts
we study in this paper—QPEs and EFPEs—guarantee se-
quenztial rationality and are a standard solution to this prob-
lem.

non-empty subset of EFPEs, with the additional requirement that
the worse an action is for a player, the lower the agent’s tremble
probability on that action must be. Therefore, the trembles are a
function of the strategies of the players. This potentially compli-
cates equilibrium finding. It is unknown whether PEs can be effi-
ciently found in extensive-form games.

2Cermik, Bosansky, and Lisy (2014) show experimentally that



Prior state of the art

In two-player zero-sum games, the problems of finding a
QPE or an EFPE can be formulated as limit points of lin-
ear programs parameterized by the tremble magnitude. In
each linear program in that sequence, the trembles are cap-
tured by requiring each action to be played with at least
some lower-bound probability. Assuming the game is of
perfect recall, the linear program can be written in the
sequence form (Koller, Megiddo, and von Stengel 1996;
Romanovskii 1962; von Stengel 1996), which we will make
precise later in the paper. The trembles used for the two
solution concepts are different, leading to problems of dif-
ferent nature. In the case of QPE, the trembles appear in
the objective function and in the right-hand side of the con-
straints (Miltersen and Sgrensen 2010). In the case of EFPE,
the trembles only appear in the constraint matrix (Farina
and Gatti 2017). Like Nash equilibrium, a QPE and EFPE
can be computed in polynomial time in the size of the in-
put game. However, the big-O complexity hides dramat-
ically larger constants in the case of a QPE or an EFPE,
and the algorithms known so far thus do not scale be-
yond small instances (Cermék, Bosansky, and Lisy 2014;
Ganzfried and Sandholm 2015).

Solutions under both concepts can be found by setting the
perturbation magnitude e to a sufficiently small value that
guarantees that the basis of the optimal solution with that
value remains optimal as € | 0,3 and then by solving the cor-
responding LP by any LP oracle for that sufficiently small e.
Miltersen and Sgrensen (2010) and Farina and Gatti (2017)
provide a formula for such an e for QPEs and EFPEs, re-
spectively, and show that it is always representable using a
polynomial number of bits. However, in practice, calling
an LP oracle with that value of e is impractical because the
value is extremely small. This causes fatal numerical insta-
bility in the LP solver if finite-precision (i.e., real-valued)
arithmetic is used. If rational (i.e., infinite-precision) arith-
metic is used, the LP oracle is prohibitively slow.

An alternative algorithm to compute a QPE is a simplex
algorithm variant that deals symbolically with the pertur-
bation using the lexico-minimum ratio test (Miltersen and
Sgrensen 2010). That algorithm may require exponential
time as it relies on the simplex algorithm, and it was not
known if, in practice, it can scale up to large instances. Our
experiments show that it does not. While in principle also
an EFPE can be computed using a simplex algorithm that
deals with the perturbation symbolically, it is not even clear
whether it can run in polynomial space. In summary, al-
though there is agreement that NE refinements can play an
important role even in two-player zero-sum games, prior al-
gorithms do not scale in practice.*

in two small artificial poker variants (six cards in the deck and two
betting rounds), for two particular models of opponent mistakes,
undominated equilibria are as good as QPEs. As explained above,
this is not the case in general.

3We use the symbol “|” to denote convergence from the right.

*Some algorithms have been proposed for computing approx-
imate trembling-hand equilibria resorting to regret-minimization
techniques (Farina, Kroer, and Sandholm 2017) or to smooth-

Our contributions

We design a practical algorithm that works in an iterative
fashion. At each iteration, it halves the value of € used in the
previous iteration, calls an LP oracle, and checks whether
the basis of the solution obtained is also a basis of an optimal
solution when € | 0. The crucial technical contribution is
the design of an efficient numerical algorithm for the basis
check step. We prove that our practical algorithm requires
only polynomial time even in the worst case (we prove that
the maximum number of iterations is polynomial and that
each iteration runs in polynomial time).

Unlike in prior papers that propose algorithms for
QPEs (Miltersen and Sgrensen 2010) and EFPEs (Farina and
Gatti 2017), which were purely theoretical, we show that our
algorithm works well in practice also. We apply it to finding
a QPE and an EFPE in many different card games: Kuhn
poker, Leduc poker with various numbers of ranks, and two
versions of Goofspiel (Ross 1971) with various numbers of
ranks. Our algorithm dramatically outperforms the prior al-
gorithms in the literature. It is able to solve games up to
four orders of magnitude larger than those previously solv-
able. It solves games with tens of thousands of nodes in a
few minutes, thus showing, for the first time, that trembling-
hand refinements can be effectively used in practice—while
having a theoretical guarantee of correctness and polynomial
run time.

Extensive-form games and Nash equilibria

Extensive-form games are a general standard representation
of games, which can capture sequential and simultaneous
moves as well as private information. It is a tree form game
supplemented with information sets. Each information set
contains a set of tree nodes, which are the set of nodes
that the player whose turn it is to move cannot distinguish
among. We will focus on extensive-form games with per-
fect recall, that is, where no player forgets what the player
knew earlier. Additional background material can be found
in the textbook by Shoham and Leyton-Brown (2008).
Extensive-form games with perfect recall are often stud-
ied in a tabular representation called the sequence form (Ro-
manovskii 1962; Koller, Megiddo, and von Stengel 1996;
von Stengel 1996). It provides a concise representation that
uses space linear in the size of the game tree. A sequence q
for player i is a subset of A that specifies player ¢’s actions
on the path from the root to a decision node v. We denote
with Q; the set of sequences of player i. A strategy de-
fined on the sequence form is called a realization plan. It
is a non-negative vector r; that maps each sequence g € Q;
to its probability of being played. A realization plan r; for
player 7 is well-defined when it satisfies the linear constraint
F;r; =f;,, where F, is a (|H;| + 1) x |Q;| matrix that con-
tains {0,+1} entries only, f; is a (|H;| + 1)-dimensional
vector, and r; is the vector that contains the realization plan

ing methods paired with bilinear saddle-point techniques (Kroer,
Farina, and Sandholm 2017). Those algorithms do not provide
any guarantee of finding or approximating actual QPEs or EFPEs.
Rather, they provide approximate solutions to approximate solution
concepts.



of player 7. Finally, the utility function of player i is repre-
sented as a sparse matrix U; defined only for the profiles of
terminal sequences leading to a leaf. The expected payoff
for player ¢ € {1, 2} when the two players play according to
the realization plan (ry,rs) is r,] U;r_; (as customary, we
let —i denote the opponent of player ).’

A NE is a strategy profile in which the strategy of each
player is a best response to the strategies of the oppo-
nents. In a two-player game, an NE can be defined in the
sequence form as a strategy profile (rf,r3) where rf €
argmaxr; U;r_; for all i € {1,2}. Even in zero-sum
games, that is games where the sum of the players’ payoffs
in every leaf is zero, NEs can be unsatisfactory as they do
not preclude suboptimal play in branches of the game tree
that are not reached in equilibrium, but that might still be
reached if players (e.g., humans) can make mistakes. See,
for instance, the work by (Miltersen and Sgrensen 2006) for
a discussion of this issue in the context of computer poker.

Trembling-hand refinements

Nash equilibrium refinement solution concepts curtail the
set of Nash equilibria by imposing additional desiderata on
the solution. A given equilibrium refinement concept selects
some subset of a game’s Nash equilibria, thus potentially fil-
tering out some or all of the equilibrium points that exhibit
undesirable behaviors. As discussed in the introduction,
trembling-hand refinements are a key form of equilibrium
refinement. In the next subsections we review key proper-
ties of the two main trembling-hand refinements, QPEs and
EFPEs.

Quasi-perfect equilibria (QPEs)

In a QPE (van Damme 1984), a player plays optimally at ev-
ery information set taking into account possible future mis-
takes of her opponent but assuming that she will not make
future mistakes. Miltersen and Sgrensen (2010) show that at
least one QPE can be found by forcing the realization r;(q)
of every sequence ¢ to be at least ¢, where d is the depth
of the sequence itself. This corresponds to a constraint of
the form r; > 1;(e), where 1;(¢) > 0 collects all the lower
bounds on the sequence realizations. So, the following re-
sult by Miltersen and Sgrensen (2010, Equation (25)) holds.

Proposition 1. In a zero-sum extensive-form game with per-
fect recall, a limit point as € | 0 of solutions of the linear
problem in Figure 1(a) is the strategy of player i € {1,2} in
a QPE.

Extensive-form perfect equilibria (EFPEs)

In an EFPE (Selten 1975), a player takes not only the op-
ponent’s but also her own possible future mistakes into ac-
count. Like QPEs, EFPEs impose a lower bound on the
realization of every sequence. Specifically, given a se-
quence ¢ and an extension with action «a (i.e., the sequence

SWe use the superscript | to denote the tran_slpose matrix. Sim-
ilarly, later in the text we use the superscript ~—  to denote the in-
verse transpose matrix.

qa), the realization r;(ga) has to satisfy the lower bound
ri(ga) > €4 r;(q), where ¢, > 0 is a real constant (different
sequences can have a different value for €,). In this paper,
we will use a uniform perturbation over the actions of the
agent form: ¢, = ¢ for all sequences q. An EFPE with such
a uniform perturbation always exists. This allows to express
all constraints of the form r;(ga) > €r;(q) more concisely
as R;(¢e)r; > 0, where R;(¢) is the behavioral perturbation
matrix. With that, the following result was proven by Farina
and Gatti (2017).

Proposition 2. In a zero-sum extensive-form game with per-
fect recall, a limit point as € | 0 of solutions of the linear
problem in Figure 1(b) is the strategy of player i € {1,2} in
an EFPE.

Trembling linear programs and their limit
solutions

The previous section shows that the problems of finding a
QPE and that of finding an EFPE are similar: in both cases
an LP with a parameter € > 0 is given, and a limit point of
a sequence of optimal solutions to the LP as € | 0 is sought.
We formalize this observation in the concept of a trembling
linear program (TLP), that is a function

max c(e)’ x
e— P(e) : st. A(e)x =b(e)
x>0

where P(e) is an LP, and A (e), b(e), c(e) are polynomials
in €, with rational coefficients. Furthermore, we require that
the set of all feasible solutions for P(e) be non-empty for
all positive reals € < €, and that the set of all feasible solu-
tions for P(0) be non-empty and bounded. These additional
assumptions are satisfied by the formulations in Figure 1.

Definition 3 (Limit solution to a TLP). A limit solution to a
TLP ¢ — P(e) is a limit point, as € |, 0, of optimal solutions
Sor P(e).

In the case of the QPE TLP (Figure 1(a)), the perturbation
variable € only appears in b; limit solutions to the QPE TLP
are QPEs. In the case of the EFPE formulation (Figure 1(b)),
the perturbation € only appears in A; limit solutions to the
EFPE TLP are EFPEs.

We now introduce the concept of basis stability for TLPs.
First, recall that a basis of an LP is a subset of the program’s
variables such that when only those columns of matrix A
that correspond to those variables are included in a new ma-
trix A’, the new matrix A’ is invertible (Bertsimas and Tsit-
siklis 1997, page 55).

Definition 4 (Stable basis). Let € — P(¢) be a TLP. The LP
basis B is called stable if there exists € > 0 such that B is
optimal for P(e) foralle : 0 < e < &

We prove that there is a tight connection between a stable
basis and a TLP limit solution. In particular, given a sta-
ble basis, one can find a TLP limit solution in polynomial
time (all proofs are presented in the appendix of the online
version of this paper):
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Figure 1: Linear programming formulations of trembling-hand refinements.

Theorem 5. Let P : € — P(c) be a TLP, and let B be a sta-
ble basis for P, optimal for all € : 0 < € < €. Furthermore,
let x(€) be the optimal basic solution of P(e) corresponding
to B. Then, x = lim. | x(¢) exists, and X is a limit solution

to the TLP P.

Given a TLP and a stable basis B for it, let B(¢) denote
the basis matrix corresponding to B in the underlying per-
turbed LP P(¢), and let cg denote the portion of the objec-
tive vector ¢ corresponding to the basic variables. Similarly,
let B(€) and ¢z denote the matrix formed by all nonbasic
columns and the vector formed by the objective coefficients
of all nonbasic variables, respectively.

Theorem 6. Given a TLP ¢ — P(¢), a basis B is stable if
and only if there exists € > 0 such that

o) (- BODO
BT ABT (B T ()es — e
The vector tg(€) is called the optimality certificate for B.

Theorem 6 is a key step in proving the following.

Theorem 7. Given as input a TLP € — P(€), there exists
€* > 0 such that for all 0 < € < €*, any optimal basis
for the numerical LP P(€) is stable. Furthermore, such a
value €* can be computed in polynomial time in the input
size, assuming that a polynomial of degree d requires Q2(d)

space in the input.

A practical algorithm for finding a TLP limit
solution

We now develop a practical algorithm for finding a limit so-
lution in a TLP € — P(€). It avoids the pessimistically small
numerical perturbation €* of Theorem 7 by using an efficient
stability-checking oracle for checking if a basis is stable or
not. It enables an iterative algorithm that repeatedly picks a
numerical perturbation €, computes an optimal basis for the
perturbed LP P(€), and queries the basis-stability oracle. If
the basis is not stable, the algorithm concludes that the per-
turbation value € was too optimistic, and a new iteration is
performed with a smaller perturbation. On the other hand,
if the basis is stable, the algorithm takes the limit of the LP
solution and returns it as the limit solution of the TLP (by
Theorem 35, this is guaranteed to provide a limit solution).
Termination of the algorithm is guaranteed by the following
observation.

Observation 8. Any value of € in the range (0, €*| guaran-
tees termination of the algorithm. Indeed, by Theorem 7,

)20 Ve:0<e<e

any optimal basis for P(€) is stable and makes our iterative
algorithm terminate. Furthermore, if after every negative
stability test the value of € is reduced by a constant multi-
plicative factor (e.g., halved), then since €* only has a poly-
nomial number of bits, the algorithm terminates after trying
at most a polynomial number of different values for €.

It is not necessary—and in general not true—that the in-
verse of B(0) exist. We start from the simpler case in which
B~1(0) exists (thus ruling out the possibility that the opti-
mality certificate tz is not defined in 0) and later move to
the general case.

Oracle for non-singular basis matrices

If B(0) is non-singular, then B7!(e)b(e) and
BT (e)B~"(e)cs — cg are analytic functions of ¢ at
e = 0. Thus tg(e) is analytic at ¢ = 0. In other words,
each entry t;(e) of tg(e) is equal to its Taylor expan-
sion ti(€) = ayo + e+ YEe? + GEe® + - where
ai; = (d7ti(€)/de?)(0) is the j-th derivative of ¢;(e)
evaluated at e = 0.5 The sign of #;(¢) in positive proximity’
of 0 is the same as the first (i.e., relative to the lowest degree
monomial) non-zero coefficient of the expansion of ¢;(e)
around 0. In other words, there exists a € > 0 such that
t;(€) has the same sign as the first non-zero derivative of ¢;
evaluated in O for all 0 < € < €. If all derivatives are 0, then
we conclude that ¢;(e) is identically zero around € = 0.
This suggests a simple algorithm for determining whether
B is stable: we compute its optimality certificate t;3(¢) and
repeatedly differentiate each row until we either determine
the sign of that row in positive proximity of 0 or we establish
that the row is identically zero. If all the rows happen to be
non-negative in positive proximity of 0, then the basis is sta-
ble; otherwise, it is not. In order to make the algorithm fast,
we need to be able to quickly evaluate t;(e) and its deriva-
tives at 0. This fundamentally reduces to our ability to effi-
ciently compute a Taylor expansion of a function of the form
B~!(¢) H(e) around ¢ = 0, where H is a matrix or vector
whose entries are polynomial in e. This part of the algorithm
assumes that a sparse LU factorization of the numerical ba-
sis matrix B(0) is available; one is easy to compute in poly-

®Throughout this paper, we define the zeroth derivative
d®f/de® of f to be f itself.

"We say that a property parametrized by e is true in positive
proximity of 0 to mean that there exists a € > 0 such that the prop-
erty holds for all € : 0 < € < €. We say that the property is true in
proximity of 0 if there exists a € > 0 such that the property holds
foralle: 0 < |¢] < &



nomial time. Below, we will break the presentation of the
algorithm into multiple steps. Since the algorithm described
below can be applied to any square matrix M (e)—not only
to a basis matrix B(e)—with polynomial entries and with
nonzero determinant at ¢ = 0, we will use the symbol M(¢)
in place of B(e).

Derivatives of M ~!(¢) H. We start by showing how to effi-
ciently and inductively evaluate derivatives of M1 (¢) H in
0, where H is a constant matrix or vector. We start with a
simple lemma.

Lemma9. Foralln > 1,

5 (n) AM(e) M)

, 1 det den—t
1=0

Lemma 9 implies that

i=1

Multiplying by H and introducing the symbol D, :=
d"M"" (0) H, we obtain

de™
M(0)D,, = — f: (”) d;i\f (0)D,_;.

1
i=1

The right hand side is relatively inexpensive to compute, es-
pecially when 7 is small. Indeed, computing (d*M /de?)(0)
amounts to extracting the coefficients of the monomials of
degree ¢ of the polynomial entries in M. This can be done
extremely efficiently by reading directly from the perturbed
LP constraint matrix A. Therefore, if we inductively
assume knowledge of Dy, Dq,...,D,_1, we can easily
compute D,, using the precomputed LU factorization of
M(0).

Derivatives of M~ (¢) H(e). We now turn our attention to
the computation of the derivatives of M1 (e) H(¢), where
H(e) can be any matrix or vector with polynomial entries.
This case is particularly relevant, as it applies to both the
primal-feasibility conditions and the reduced costs.

We introduce the formal symbol (i, j) defined over pairs

(i,7) € N% as (i,j) := dig/gl (0) X (0). By means of

the product rule, we have that

CMI\;;H)(O):ZH:G) (ion—i). (D

=0

From the previous section, we know how to compute (i +
1, 7) having access to (0, 5), (1, j), ..., (i,7). On the other
hand, (0,j) = M(0)~'d?/de’ H(0) is easy to compute
having access to the LU factorization of M(0). There-
fore, Equation (1) gives an efficient way of expanding
M~ !(e)H(e) into its power series. Finally, we address the
problem of determining, row by row in the derivative vector
in the Taylor series, when it is safe to stop after observing
only zero-valued derivatives for some row for a number of
iterations (i.e., a number of terms in the Taylor series).

Lemma 10. Consider a TLP ¢ — P(€) where P(e) has n
rows and let m be the maximum degree appearing in the
polynomial functions defining P. Fixed any basis B, if the
first 2nm + 1 derivatives of the i-th entry of the optimality
certificate t(€) are all zero, the entry is identically zero.

Since 2nm + 1 is a polynomial number in the input size,
we conclude that the overall algorithm runs in polynomial
time, since it terminates in a polynomial number of steps
and each step takes polynomial time. There is a more con-
venient way of determining whether a given row is 0. It is
sufficient to pick a random number € (for example in (0, 1)),
and evaluate the rational function ¢, at €: if ¢;(€) = 0, then
t; is identically zero with probability 1 because of the fun-
damental theorem of algebra. This is the variant that we use
in the experiments later in this paper.

Finally, in some cases we can take theoretically sound
shortcuts to further enhance the speed of the algorithm. We
provide two examples, and we use the two in our implemen-
tation of the algorithm. As the first example, consider a TLP
that, for each ¢, has no objective. In this case, the vector c is
zero. This allows us to avoid considering the reduced-cost
conditions of Theorem 6, thereby saving time and space. As
the second example, if in the QPE formulation of Proposi-
tion 1, the LP constraint matrix A is constant, meaning that
the optimality certificate b has polynomial entries, it is ex-
tremely easy to deal with. Again, we can avoid computing
all the derivatives of B~!, with large practical savings of
time and space.

Oracle for singular basis matrices

We now show how to deal with a singular B(0). The core
idea of our method is to replace the computation of the Tay-
lor expansion of the optimality certificate around e = 0 with
a Laurent expansion, that is a power series at ¢ where neg-
ative exponents are allowed. Lemma 11 provides the key
result that enables this process.

Lemma 11. Let M(e) be a square matrix with polynomial
entries, not all of which are identically zero. Then there exist
k € Nt and matrices M(¢) and T(€) that have polynomials
as entries, with nonsingular M(O), such that

M(e) = ¥ T71(e) M(e), 2)
in proximity of € = Q.
B(e) respects the hypotheses of Lemma 11: its entries are

not all identically zero since its determinant is not identically
zero. Inverting Equation (2) in proximity of ¢ = 0, we obtain

Now, given a matrix or vector with polynomial entries H(e),
suppose that we seek to expand M~ (¢) - H(e) into its Lau-
rent series. Due to Lemma 11, we can rewrite this product
as

M- (€) - H(e) = 5 (M7((T(H())

where the equality holds in proximity of e = 0. Since M(G)
is a square matrix with polynomial entries invertible at e = 0



Game Instance Nodes Information Sets Sequences
Description Acronym Nature Leaves Player1 Player2 | Player 1 Player 2 Player 1 Player 2
Kuhn poker K 1 30 12 12 ‘ 6 6 13 13
Simple Leduc poker SL 13 98 44 44 28 28 57 57
Leduc poker — 3 ranks L3 46 1116 387 387 144 144 337 337
Leduc poker — 5 ranks L5 126 5500 1875 1875 390 390 911 911
Leduc poker — 8 ranks L8 321 22936 7752 7752 984 984 2297 2297
Leduc poker — 9 ranks L9 406 32724 11043 11043 1242 1242 2899 2899
Goofspiel — 3 ranks G3 28 216 273 333 273 273 334 334
Goofspiel — 4 ranks G4 1793 13824 17476 21328 17 476 17 476 21329 21329
Goofspiel* — 3 ranks G*3 0 36 46 57 46 46 58 58
Goofspiel* — 4 ranks G*4 0 576 737 916 737 737 917 917

Table 1: Tree sizes and acronyms of the test game instances.

and T(e)H(e) is a vector or matrix with polynomial en-
tries, we can leverage the machinery of Section to expand
M~ (e) - (T(e)H(e)) into its Taylor series around ¢ = 0.
Multiplying this power series by e % gives a Laurent series
for M~1(e)H(e) at € = 0. The above shows how to deal
with a singular basis matrix. The rest of the algorithm re-
mains unchanged. Together, Sections and show that, for
every TLP, there exists a polynomial-time basis-stability or-
acle.

Finally, we deal with the last piece of the algorithm,
which is the computation of the limit of optimal solutions
limjox(e) = limcoB7!(e)b(e). This task is easy af-
ter having computed the Laurent series expansion of x(¢)
around € = 0 (see Sections and ).

Experiments

The LP oracle we use is GLPK 4.63 (GLPK 2017). When
e > 1/500 we use the finite-precision simplex algorithm
provided by GLPK, while for ¢ < 1/500 we use the
arbitrary-precision variant, as, from our observations, when
€ < 1/500 the finite-precision solver is doomed to even-
tually fail due to numerical instability. We experimentally
evaluate the performance of the following four algorithms.
Exact Nash equilibrium solver, using an LP oracle with
arbitrary-precision arithmetics. We warm start the LP oracle
with a NE found by an LP oracle that uses finite-precision
arithmetics.

“NPP solver” for EFPE (Miltersen and Sgrensen 2010) and
for QPE (Farina and Gatti 2017), using an infinite-precision
LP oracle; to improve the efficiency, we warm start the
LP oracle with a NE found using an LP oracle with finite-
precision arithmetics.

Symbolic-simplex QPE solver (“M&S Solver”), proposed
by Miltersen and Sgrensen (2010) to find a QPE. It is a mod-
ified simplex algorithm, where some entries are kept as poly-
nomials. We implemented the algorithm as described in the
original paper. However, we modified the pivoting rule from
the suggested one (pick any nonbasic variable with positive
reduced cost) to the greedy one (pick any nonbasic variable
with maximum reduced cost). This greatly improved run
time.

Our proposed practical algorithm from Section for find-
ing a TLP limit solution. We use an LP oracle with infinite-
precision arithmetics; to improve the efficiency, we warm
start the first iteration of the algorithm with a NE found by
an LP oracle with finite-precision arithmetics, and we warm
start each subsequent iteration with the NE returned by the
previous iteration. The second iteration is performed with
e = 1/10, and € is halved between subsequent consecutive
iteration.

Table 1 lists the games we use to benchmark the algo-
rithms, together with their sizes. All the games are fairly
standard in the computational game theory literature. Ap-
pendix ?? includes a detailed description of each game.
Every experiment was repeated 50 times. We summarize the
average empirical results in Table 2.

Exact Nash equilibrium computation. The impact of the
rational simplex iteration is minimal in the case of the (ex-
act) NE solver. This is because the rational simplex is warm
started from a finite-precision solution, and in practice this
avoids further rational-precision pivoting steps. For exam-
ple, in L9, the finite-precision LP oracle is responsible for
roughly 90% of the total compute time, while in G4, this
figure grows to about 98%.

NPP solvers. The largest poker games solvable within 6
hours were L5 (QPE case) and SL (EFPE case). The NPP
solver is significantly slower than the NE solver. This is be-
cause 1) it requires a larger number of pivoting steps, and
2) each pivoting step has a higher cost. Unlike the exact
NE computation, additional pivoting steps are needed by
the rational simplex to find a QPE or an EFPE, even after
warm starting from a Nash equilibrium. These extra pivot-
ing steps need to manipulate extremely small constants due
to the values of ¢, hence introducing a large overhead. For
instance, in L5, the order of magnitude of the ¢ used for
QPE is 1075883, In the QPE case, these expensive numer-
ical values only appear in the objective function and in the
right-hand-side constants. In the EFPE case, they appear
in the constraint matrix, and there are qualitatively more of
them, making the computation even slower. Accordingly,
the EFPE NPP solver scales very poorly.



| Nash | QPE \ EFPE
G Simplex | M&S NPP TLP Solver NPP TLP Solver
ame

LP Solv. | LP Solv. LP Solv. LP Solv. Oracle Iters. Final ¢ | LP Solv. LP Solv. Oracle Iters. Final €
K ‘ 1ms ‘ 78ms 28ms 45ms 35ms 2 1/10 ‘ 14ms 1ms 5ms 2 1/10
SL 4ms 5.71s 93ms 19ms 82ms 2 1/10 3.09s 5ms 26ms 3 1/20
L3 59ms 36.35m  37.21s 362ms 1.99s 11 1/5120 > 6h 1.56s 1.15s 12 1/10240
L5 372ms > 6h 27.81m 2.61s 4.43s 10 1/2560 > 6h 57.65s 2.87s 10 1/2560
L8 3.35s > 6h > 6h 13.38s 16.65s 14 1/40960 > 6h 3.51m 1.18m 17 1/327680
L9 4.90s > 6h > 6h 30.60s 21.47s 15 1/81920 > 6h 22.66m 28.43s 15 1/81920
G3 33ms 21.64m 2.88s 62ms 251ms 2 1/10 1.93m 36ms 117ms 2 1/10
G4 1.01m > 6h > 6h 293m 28.02s 5 1/80 > 6h 146m 1.0lm 5 1/80
G*3 5ms 7.03m 94ms 20ms 78ms 2 1/10 266ms 5ms 22ms 2 1/10
G4 204ms > 6h 4.00m 588ms 1.48s 6 1/160 > 6h 417ms 1.83s 6 1/160

Table 2: Comparison between different solvers (acronyms are as in Table 1). For TLP Solver, ‘Iters.’: number of different perturbations
tried; ‘Final €’: value of € in the last iteration of our algorithm; ‘LP Solv.” and ‘Oracle’: total compute time over all the iterations spent by the
LP solver and our Basis Stability Oracle, respectively. The total compute time of our algorithm is given by the sum of these two quantities.

M&S solver. The M&S solver only applies to QPEs. Em-
pirically, it is significantly slower than the NPP solver. The
reason is two-fold. First, the method is harder to warm start,
as the initial basic solution has to be feasible for all suffi-
ciently small e > 0. We initialize the method according to
the suggestion of the authors, but this initial vertex is empir-
ically farther away from the optimal one than a NE, which
we use to warm start NPP solvers. Second, the pivoting step
is more expensive, as the min-ratio test is substituted with a
more sophisticated lexicographic test on polynomial coeffi-
cients.

TLP solver. Our solver represents a dramatic improve-
ment over the prior state-of-the-art algorithms. It finds a
QPE/EFPE in few minutes even on the largest game in-
stances. This is a reduction in runtime by 3—4 orders of mag-
nitude. This breakthrough is mainly due to the fact that, in
practice, terminates with an e that is drastically larger than
that required by the NPP algorithms. As shown in Table 2,
the final € used by our solver is never smaller than 1076,
even for the largest instances. In Kuhn poker, the final € of
our solver is about 10~5 for QPE, while the ¢ value used by
the prior algorithms is of the order 10~%2. In some cases,
our method is able to compute an exact refinement without
even using rational arithmetic. Still, our TLP solver is sig-
nificantly slower than the solver for NE. For instance, on
L9, the ratio of the compute times is about 30. Here, the
bottleneck is mostly due to LP oracle, while the compute
time required by our basis stability oracle is relatively small,
and becomes relatively even smaller with increasing prob-
lem size.

Conclusions

We introduced trembling linear problems (TLPs), which are
linear programs in which every entry can be subject to an in-
dependent perturbation expressed by a polynomial in € > 0.
We defined a limit solution to a TLP as any limit point of
any sequence of optimal solutions for the perturbed linear

program as € | 0. For game theory, TLPs provide a frame-
work for analyzing and computing important Nash equilib-
rium refinements based on various forms of trembling-hand
perfection in two-player zero-sum games, such as quasi-
perfect equilibria (QPEs) and extensive-form perfect equi-
libria (EFPEs). We designed an exact polynomial-time al-
gorithm for finding a limit solution to a TLP that, when ap-
plied to finding a QPE or EFPE, outperforms the speed of
prior algorithms by several orders of magnitude. Our algo-
rithm quickly solves games with tens of thousands of nodes,
thus enabling—for the first time—the use of trembling-hand
refinements in practice.
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