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Abstract

Despite the notable successes in video games such as Atari
2600, current AI is yet to defeat human champions in the do-
main of real-time strategy (RTS) games. One of the reasons
is that an RTS game is a multi-agent game, in which single-
agent reinforcement learning methods cannot simply be ap-
plied because the environment is not a stationary Markov De-
cision Process. In this paper, we present a first step toward
finding a game-theoretic solution to RTS games by apply-
ing Neural Fictitious Self-Play (NFSP), a game-theoretic ap-
proach for finding Nash equilibria, to Mini-RTS, a small but
nontrivial RTS game provided on the ELF platform. More
specifically, we show that NFSP can be effectively combined
with policy gradient reinforcement learning and be applied to
Mini-RTS. Experimental results also show that the scalabil-
ity of NFSP can be substantially improved by pretraining the
models with simple self-play using policy gradients, which
by itself gives a strong strategy despite its lack of theoretical
guarantee of convergence.

Introduction
With the recent rise of deep neural networks, reinforcement
learning has shown remarkable achievements in many com-
plex environments. In the Atari 2600 video game environ-
ment, agents trained with deep reinforcement learning meth-
ods have succeeded in achieving human-level, or even super-
human performance in most of the games (Mnih et al. 2015;
2016; Van Seijen et al. 2017). However, in the domain of
real-time strategy (RTS) games, which are considered to be
one of the next grand AI challenges after Chess and Go (Tian
et al. 2017; Silver et al. 2017), current AI is yet to defeat top
human players (Vinyals et al. 2017).

To tackle this challenging domain, several platforms for
conducting experiments on RTS games have been devel-
oped (Ontanon 2013; Synnaeve et al. 2016; Vinyals et al.
2017). The ELF platform (Tian et al. 2017) is such a plat-
form and is an extensive, lightweight, and flexible platform
designed for reinforcement learning research. It provides a
small but nontrivial RTS game called Mini-RTS, and this
game runs an order of magnitude faster than existing RTS
environments, while capturing all the basic dynamics of RTS
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games, e.g., fog-of-war, resource gathering, troop building,
and attacking with troops.

In this work, we aim to find a game-theoretic solution to
Mini-RTS; that is, we attempt to compute an equilibrium
strategy profile, as a first step toward solving more real-
istic and complex RTS games. Developing an AI for RTS
involves many difficulties, including strategic and tactical
decision making, real-time planning, and domain knowl-
edge exploitation (Ontan et al. 2013; Robertson and Watson
2014). In this paper, we particularly focus on the multi-agent
property: RTS games are multi-agent games and thus are not
stationary for a learning agent, which breaks an assumption
of single-agent reinforcement learning that the environment
can be modeled as a Markov Decision Process (MDP).

Heinrich, Lanctot, and Silver (2015) proposed a game-
theoretic self-play approach called Fictitious Self-Play
(FSP). In FSP, an agent calculates the best response strat-
egy to its opponents with reinforcement learning and aver-
ages its strategies in a sampling-based fashion. This pro-
cess forms Fictitious Play (FP) (Brown 1951; Leslie and
Collins 2006) in extensive-form games, and can be applied
to a large-scale imperfect-information game. Since FP has
a theoretical guarantee of convergence to a Nash equilib-
rium with minimal restrictions, FSP has a reliable theoreti-
cal background on convergence, and is more likely to con-
verge than raw self-play methods. Neural Fictitious Self-
Play (NFSP) (Heinrich and Silver 2016), a variant of FSP
that uses deep reinforcement learning for its best response
component, learned an approximate Nash equilibrium in
small games of Poker without any prior domain knowledge.

In this paper, we show that NFSP can be effectively com-
bined with policy gradient reinforcement learning and be
used in the Mini-RTS domain. Our experimental results also
show that the scalability of NFSP can be substantially im-
proved by pretraining the models with simple self-play us-
ing a policy gradient method, which is efficient and by itself
gives a strong strategy despite its lack of theoretical guaran-
tee of convergence. To the best of our knowledge, this is the
first attempt to find a convergent strategy profile in a non-
trivial RTS game, hereby presenting a promising direction
toward finding Nash equilibrium strategies for RTS games
(i.e., solving RTS games).



Figure 1: A game screenshot of Mini-RTS. Here the sight is
for the lower-left agent whose health bars are enclosed by a
blue line. Because of the fog-of-war, the agent cannot see the
vicnity of the opponent’s base, so it does not know whether
the opponent has any troops or not.

Task
ELF and Mini-RTS
Our objective is to compute an equilibrium strategy that is
not exploitable for the Mini-RTS game in the ELF platform.

In Mini-RTS, the goal of the agent is to destroy the op-
ponent’s base with its troops. Each agent has its base, units,
and resource. With its base and some resource, the agent can
build a worker. A worker can build a barrack, and some at-
tackers with the barrack.

The ELF game engine is tick-driven: at each tick, each
agent makes decisions by sending commands on units based
on the observation. The game state changes according to the
commands and new observations are given to the agents.
Because there is fog-of-war in mini-RTS as in other RTS
games, agents cannot observe units of its opponents in
fog-of-war, and thus the game is imperfect information. A
screenshot of the game is shown in Figure 1.

In addition to the low- and micro-level commands like
“move left by two pixels” for each unit, the ELF engine has
more hierarchical and strategic commands like “make some-
one go to some available place and build a barrack” or “de-
fend our base from the enemy’s attackers” for its all units.
We use these commands instead of raw commands. Specif-
ically, agents have nine discrete strategic actions. Four of
these are about building units: a worker, a barrack, a melee
attacker, and a range attacker. The next four are about tacti-
cal commands: attack, attack-in-range, hit-and-run, and all-
defend. The last command is Idle, which means doing noth-
ing. These actions are global, i.e., they affect all units in
one command. Agents receive a low-level observation ma-
trix shaped 22 × 20 × 20 at each tick, where 20 × 20 rep-
resents the resolution of the observation for the game map,
and 22 channels contain the number of each kind of units
like a worker or the base.

Background
Markov Decision Process and Reinforcement
Learning
An MDP is an environment model for standard reinforce-
ment learning. In reinforcement learning with an MDP, an
agent interacts with an MDP environment E . At each time

step t, the agent receives a state st ∈ S and selects an action
at from a set of possible actions A with a probability distri-
bution π : S ×A → [0, 1], which is called a policy. In E the
action is executed, and it returns a next state st+1 with re-
ward rt+1. The goal of the agent is to maximize its expected
cumulative reward E [Rt] = E

[∑∞
k=0 γ

krt+k
]
, where γ is

a discount factor.
If the agent cannot distinguish between some states of

the environment, the environment is called a Partially Ob-
servable MDP (POMDP). In a POMDP environment Ep, the
agent receives an observation ot = O(st), where st is a true
state of Ep and O is a function that maps a state to an obser-
vation of the agent. The agent selects an action at fromA as
in an MDP, but the policy π depends on the observation ot
and not on the state st, because the agent cannot observe the
true state.

We will use the following standard definitions of the state-
action value function Qπ (st, at) = E

[∑∞
k=0 γ

krt+k
]
, the

value function Vπ (st) =
∑
a∈A π (a | st)Qπ (st, a), and

the advantage function Aπ (st, at) = Qπ (st, at)− Vπ (st).

Extensive-Form Games
In this work, we regard RTS games as extensive-form games.
An extensive-form game is a model for a sequential multi-
agent game. The representation is based on a finite rooted
game tree.

In an extensive-form game, for each agent i ∈ N , there
are some indistinguishable states. An information set ui ∈
Ui contains such states; namely, the agent i cannot distin-
guish s1 and s2 and is forced to act in the exact same way
if the two states are in the same information set ui. If the
agents in the game never forget their acquired information,
the game is called perfect recall. In a perfect recall game, the
graph of information sets forms a tree. And if the game has
only two agents and R1 +R2 = 0 for all states, the game is
called a two-player zero-sum game.

Each agent has its own strategy πi, which specifies the
probability distribution over the possible actions A(s) in the
given state s. A strategy profile π = {π1, · · · , πN} is a tuple
of strategies for all agents. We can consider the expected cu-
mulative reward R(π) given a fixed strategy profile. A strat-
egy of the agent i is called the best response strategy to its
opponents’ strategy π−i = {πj | j 6= i} if the strategy max-
imizes its expected reward R (·, π−i). A Nash equilibrium
of an extensive-form game is a strategy profile such that for
each agent its strategy is the best response strategy to the
others’ strategies.

We can combine this game-theoretic model with MDPs.
In an extensive-form game, if we pick an agent and fix other
agents’ strategies, then the environment can be regarded as a
single-agent POMDP for the picked agent. In addition, if the
game is perfect recall, this POMDP can be converted into an
MDP environment, because the probability distribution of
reaching indistinguishable states is stationary and thus these
states can be degenerated into one state.

Neural Fictitious Self-Play
NFSP (Heinrich and Silver 2016) is a variant of FSP that
uses neural networks and Deep-Q Networks (DQN) (Mnih



et al. 2015) for its approximation functions. FSP is a scalable
method that uses FP in extensive-form representations.

In FP, a popular game-theoretic model of learning, agents
repeatedly play a game, choosing the best response strategy
to their opponents’ average strategies at each iteration. The
average strategies converge to a Nash equilibrium when the
game has certain properties, e.g., two-player zero-sum or po-
tential games.

FP is a theory on a normal-form representation, where
each agent acts only once per one game, which is not
suited to large-scale applications. To overcome the limita-
tion, Heinrich, Lanctot, and Silver (2015) proposed a full-
width extensive-form fictitious play and FSP. Both methods
are developed for an extensive-form representation, and the
former is a full-width method and the latter is an appro-
priately approximated (hence scalable to large-scale games)
method. As with FP, agents in FSP repeatedly play a game,
storing their experience in memory. Instead of computing
the full-width best response strategy, they learn an approxi-
mate best response using reinforcement learning (RL). And
instead of averaging their full-width strategies, they learn an
approximate average strategy by using supervised learning
(SL).

NFSP is not a method that simply applied neural networks
to FSP. In NFSP, agents memorize their experiences in a
reservoir replay buffer (Vitter 1985) to avoid windowing ex-
periences due to sampling from a finite memory. NFSP also
uses anticipatory dynamics (Shamma and Arslan 2005) to
enable each agent to effectively track changes in its oppo-
nents’ behavior.

The resulting NFSP algorithm is as follows. Each agent i
has its RL network βi, SL network πi, and SL reservoir re-
play bufferMSL

i . At the beginning of the game, each agent
decides whether it uses βi or πi as its strategy in this episode,
with probability η and 1−η, respectively. At each time step,
agents sample an action from the selected strategy, and if
the selected strategy is βi, a tuple of the observation and
the taken action is stored inMSL

i . βi is trained as it maxi-
mizes the expected cumulative reward against π−i and πi is
trained as it represents the probability distribution over ac-
tions inMSL

i . SinceMSL
i is a reservoir buffer and tuples in

MSL
i are taken from βi, πi demonstrates the average strat-

egy over the past RL strategies. In addition, since the mixed
strategy representated by choosing one from two extensive-
form strategies at the beginning of episodes forms a real-
ization equivalent strategy to the mixed strategy of the two
normal-form strategy, the behavior strategy in each episode
is ηβti + (1 − η)πti = πti + η(βti − πti) ' πti + ηα d

dtπ
t
i '

πt+∆t
i , which is a short-term prediction of πti . Thus, for any

agent i, it computes an approximated best response strategy
to its opponents’ average strategy (with some time predic-
tion) π−i, and an approximated average strategy over the
past best response strategies βi, which forms an approxi-
mated FP.

Proximal Policy Optimization
For the reason discussed later in the Method section, we do
not use a value-based reinforcement learning method such

as DQN as our reinforcement learning algorithm. Instead,
we use a policy-based reinforcement learning method called
Proximal Policy Optimization (PPO) (Schulman et al. 2017),
which extends and simplifies Trust Region Policy Optimiza-
tion (TRPO) (Schulman et al. 2015).

In TRPO, an objective function Et
[
πθ(at | st)
πθold (at | st) Ât

]
is

maximized, subject to a constraint on the policy update
represented as the Kullback-Leibler divergence between
πθ (· | st) and πθold (· | st), where θold is the fixed parameters
before the update.

The constraint in this optimization problem is introduced
to prevent an excessively large policy update. PPO uses a
clipping term instead of this constraint, i.e., maximizing the
following function under the unconstrained condition:

L(θ) = Êt
[
min

(
rtÂt, clip (rt, 1− ε, 1 + ε) Ât

)]
, (1)

where rt is the probability ratio rt = πθ(at | st)
πθold (at | st) , ε is

a hyperparameter that determines the threshold, and Ât is
an estimator of the advantage function At. This scheme is
much simpler to implement and empirically has better per-
formance than original TRPO.

Method
We regard RTS games as two-player zero-sum perfect re-
call extensive-form games and apply self-play methods to
them. This view is justified as follows: although there are
many units in an RTS game, agents can control all of them
and have all information about them, and hence the game is
essentially a two-player zero-sum game. Because of the ex-
istence of fog-of-war, the game is an imperfect information
game. An RTS game is originally real-time and is not tick-
driven, but in practice almost all of the RTS games have dis-
crete time steps and therefore the game can be regarded as an
extensive-form game. If each agent collects all observation
histories and treats the set of them as a new observation, then
the game is modeled as a perfect recall game. In this work
we do not memorize past histories. We will discuss it in the
section of future work.

While the original NFSP uses DQN with a replay buffer
as its RL algorithm, there can be an on-policy problem.
Value-based RL methods including DQN are known to be
off-policy algorithms; that is, one can use any data sampled
by any behavior policies to train the target policy. However,
in NFSP, we cannot use the off-policy data because the op-
ponents’ strategies are not stationary. Although we do not
need to sample the training data with the target policy, we
still need to sample the data along the environment, and the
transition rules of the environment now depends on the be-
havior policy of the opponent. Using a circular replay buffer
in self-play requires the strict assumption that the training
speed of its opponent is sufficiently slower than the rein-
forcement learning.

To exploit this fact efficiently, we use a policy gradient al-
gorithm, which is by nature on-policy. Specifically, we com-
bine NFSP and PPO, a state-of-the-art policy gradient al-



Algorithm 1 NFSP with PPO

Γ is an ELF interface and N is the number of agents
1: function MAIN(Γ, N )
2: for p = 1, 2, · · · , N in parallel do . p is a learning

agent
3: Γ.Initialize()
4: Γ.RegisterCallback(p, Trainer)
5: Γ.RegisterCallback(p, RL Actor)
6: for q = 1, · · · , p− 1, p+ 1, · · · , N do
7: Γ.RegisterCallback(q, SL Actor)
8: end for
9: repeat

10: repeat
11: batch← Γ.StepAndAccumulate() .Mul-

tiple games are executed asyncronously and observation
data is accumulated into the batch

12: until The number of accumulated data
reaches certain batch size

13: Γ.CorrespondingCallback(batch)
14: until Time steps exceed the certain limits
15: end for
16: end function
17: function TRAINER(p, batch)
18: {Sτ , Aτ ,Πτ , Rτ}{τ=t,··· ,t+T−1} ← batch

. State, action, probability distribution, and reward
. Πt is a probability distribution of NNRL at t

19: Calculate LRL with eq. (2)
20: Memorize {Sτ ,Πτ} in bufferMSL

21: Sample S,Π←MSL

22: Calculate LSL with eq. (3)
23: Optimize NNRL and NNSL with LRL and LSL
24: end function
25: function RL ACTOR(p, batch)
26: S ← batch
27: π ← NNRL(S)
28: return Sampled a← π
29: end function
30: function SL ACTOR(p, batch)
31: S ← batch
32: π ← NNSL(S)
33: return Sampled a← π
34: end function

gorithm, applying PPO as the RL method of NFSP. Algo-
rithm 1 shows the overview.

In this algorithm, action or training functions are formed
into callbacks and registered to a game process. In steps
from line 10 to line 13, multiple games are executed in paral-
lel threads in the process, and one of the registered callback
functions is called with appropriate batch information.

In this work, we launch N processes in parallel, and for
each process we register agent p’s action function that fol-
lows the strategy produced by the RL component and other
agents’ action functions that follow the strategies produced
by the SL components, and build multiple game threads
in parallel. Here N is the number of agents (in this work
N = 2) and p is the index of a process.

This algorithm is different from the original NFSP, which
mixes RL and SL actors and choose either of them at the
beginning of each game. This is again due to an on-policy
problem. In the original NFSP, an agent p has four types of
experiences, namely, (πp, π−p), (πp, β−p), (βp, π−p), and
(βp, β−p), where π is a SL strategy and β is a RL strategy.
If the RL method is off-policy as in the original NFSP, then
we can use all experiences. However, since it is now on-
policy, we can only use (βp, ·) experiences, which signifi-
cantly reduces its sample efficiency. LaunchingN processes
in parallel and assigning each agent i for them, we can re-
duce inefficient data (πp, π−p) and (βp, β−p).

Here is another reason for the modification. Although the
ELF platform is general and flexible, there is a difficulty
in implementing original NFSP on the platform. In origi-
nal NFSP, agents need to decide whether they follow the
RL component to perform the best response strategy to its
opponents, or the SL component to act as the average strat-
egy of its past best response strategies, at the beginning of
the game. However, in the ELF platform, in order to cal-
culate the forward computing efficiently, observation data
are accumulated, bundled, and sent with a callback function
to a corresponding agent as a batch. We thus need to di-
vide the given batch into RL and SL batches, and search for
the terminal observation to decide which components to use
in each game, spoiling the computing efficiency. The pro-
posed algorithm overcomes the problem and is easier to im-
plement than the original one, because we do not have to
decide which component to follow, but just separately build
N ELF processes in parallel.

During RL training in line 19, LRL is calculated in almost
the same way as in PPO. That is,

LRL = Lpolicy + αLentropy + βLvalue , (2)
where Lpolicy is the main PPO cost function defined
by the negation of the equation (1), Lentropy =∑
a πθ(a | s) log πθ(a | s) is a bonus term that encourages

exploration for the agent, and Lvalue is a squared mean er-
ror between Vθ and the target value Vtarget = Ât + Vθold .
The estimator Â is calculated by Ât = δt + kδt+1 + · · · +
kT−t+1δT−1, where δt = rt + γVθ(st+1)− Vθ(st).

Following the implementation in the OpenAI Base-
lines (Dhariwal et al. 2017), we use the clipped value loss
as Lvalue,

Vclip(s) = clip (Vθ(s)− Vθold(s),−εv, εv) + Vθold(s) ,

Lnonclipvalue = (Vθ(st)− Vtarget(st))2
,

Lclipvalue = (Vclip(st)− Vtarget(st))2
,

Lvalue = max
(
Lnonclipvalue ,Lclipvalue

)
,

and normalize the average and variance of the advantages in
a batch.

During SL training in line 22, LSL is calculated by

LSL = −
∑
a

πθRL(a|st) log πθ(a|st) , (3)



which is the cross entropy between the probability distribu-
tion of SL and RL.

For memorizing the experiences in line 20, we use reser-
voir sampling (Vitter 1985) as a sampling method for the
replay buffer like original NFSP (Heinrich and Silver 2016).
A reservoir replay bufferMRRB maintains NRRB data tu-
ples {sti , πti}i=1,··· ,NRRB and the number of given tuples
MRRB . When served {st, πt}, MRRB memorizes it with
probability NRRB

MRRB+1 , or otherwise rejects it. When a new
tuple is memorized, each old tuple in MRRB is discarded
with equal probability, i.e., in 1

NRRB
. It follows that for any

time T , each data tuple {st, πt}t≤T is stored inMRRB with
probability NRRB

MRRB
, which means that this replay buffer con-

tains a uniform random sample of the given tuples.
We also use the raw self-play method with PPO. The algo-

rithm is the same as the NFSP shown in Algorithm 1, except
that the SL Actor function and SL training in the Trainer
function are omitted and all agents act with the RL Actor
function.

Experiments
Experimental Settings
Unless otherwise specified, all experiments are con-
ducted on the following settings. The batch size is 128
and the batch time is 50; namely, in line 18 in Al-
gorithm 1 the batch contains 128 sequences of tuple
{Sτ , Aτ ,Πτ , Rτ}{τ=t,··· ,t+T−1} where T = 50, and in
line 26 and 31 the batch contains 128 states. In the reser-
voir sampling in line 21, we sample 512 states. The frame
skip is set to 50, and thus each agent makes its decisions
every 50 frames. In a process, 512 games are executed. We
use Convolutional Neural Networks (CNNs) as the RL and
SL models. Specifically, we use four blocks and some head
layers for the CNN, where each block consists of a 3 × 3
convolutional layer with 64 channels and appropriate zero
paddings, batch normalization, and leaky ReLU activation
with α = 0.1. For every two blocks, we use a 2 × 2 max
pooling layer. The head layer is fully-connected and maps
the flattened input to an output. There are three heads: πSL,
πRL, and VRL. The heads for πSL and πRL have nine out-
puts and a softmax layer to form a probability distribution,
whereas the head for VRL has only one output and does
not have the softmax layer. The parameters of body blocks
for πRL and VRL are shared, while πSL and πRL are not.
Note that all agents use the same networks and their RL and
SL networks are entirely shared. We use stochastic gradient
descent with gradient clipping to optimize the models. The
maximum gradient norm is set to 0.5. We use 0.01 and 0.001
for the learning rate of the RL model and the SL model re-
spectively. In the RL loss function in the equation (2), we
use α = 0.01, β = 0.5, γ = 0.99, k = 0.95, and εv = 0.1.

Self-Play and NFSP for Mini-RTS
We train agents with raw self-play and NFSP, and evaluate
them with the win rate against rule-based AIs. In Mini-RTS,
there are two rule-based built-in AIs: AI-Simple and AI-
Hit-and-Run. AI-Simple simply builds five tanks and then

(a) Win rate against AI-Simple.

(b) Win rate against AI-Hit-and-Run.

Figure 2: Win rate in Mini-RTS with respect to the amount
of experience in different methods. The horizontal axis is
log-scale. NFSP is shown in the red line.

attacks the opponent base. AI-Hit-and-Run is more aggres-
sive and often harasses the opponent with its tanks. A human
player has a win rate of 90% and 50% against AI-Simple and
AI-Hit-and-Run respectively (Tian et al. 2017).

Because the game is a symmetric two-player zero-sum
game, if an agent follows a strategy of a Nash equilibrium
strategy profile, the agent is never exploitable, and thus it
wins at least 50 percent against any strategies. If the game
is sufficiently small, we can evaluate the exploitability of
a strategy profile, which is the value that shows how close
the strategy profile is to a Nash equilibrium (Johanson et
al. 2011). However, ELF Mini-RTS is too large to calcu-
late it. There are scalable methods to calculate the approxi-
mated or bounded exploitability such as local best response
teqnique (LBR) (Lisy and Bowling 2017). Although LBR
can calculate a lower bound of the given strategy profile, it
cannot calculate an upper bound. In this work, we simply
evaluate the agents with win rates against rule-based AIs,
which is an estimator of a lower bound of the exploitability.
Each evaluation consists of at least 1000 games.

Figure 2 shows the results of self-play methods, with the
results of PPO agents. Evaluated against AI-Simple, the PPO
agent trained against the same AI has the highest win rate.
However, it fails to generalize its strategy against AI-Hit-
and-Run and thus its strategy is far from Nash equilibria.
The PPO agent trained against AI-Hit-and-Run also fails to
exploit the AI-Simple.



The win rate of the agent trained with NFSP steadily in-
creases as the number of experienced games increases. Al-
though the rate is lower than the rate of the appropriate PPO
agent, the NFSP agent does not fall into a specialized best
response strategy but gradually acquires a less exploitable
strategy.

The agent trained with raw self-play reaches the same
result as the NFSP agent in the AI-Hit-and-Run evalua-
tion, and even better result in the AI-Simple evaluation. Al-
though there is no theoretical guarantee that a self-play al-
gorithm converges, it can reach a Nash equilibrium if it con-
verges (Foerster et al. 2018), and it is faster than NFSP be-
cause NFSP agent has to learn both the best response strat-
egy to its opponent and the averaged strategy. Note that
Klimov and Schulman (2017) show a counter example that
a self-play method oscillates and thus does not converge. In
this experiment such an oscillation is not observed.

Note that we do not conduct an experiment with the com-
bined AI, namely, an AI that acts as AI-Simple in 50% and
acts as AI-Hit-and-Run in 50%, unlike Tian et al. (2017), be-
cause we evaluate the strategies with these built-in AIs and
we have to make at least one of them unknown to the trained
agent to evaluate its performance against unseen opponents.

From Figure 2 we can see that even the highly specialized
agent wins in at most 65% of the games. This is because the
Mini-RTS game has considerable randomness at the begin-
ning of the game. When the game starts, resources, bases,
and units are randomly placed in the game field. Because
of the frame skip, if an agent has no tank and its opponent
has some tanks at the beginning of the game, and the oppo-
nent decides to attack with them, the agent has no way to
defend against the rush. Even the agent trained with PPO in
107 games against a pure random agent loses in 29% of the
game against the same random agent.

Analysis of the acquired agents
We further analyze the acquired agents. To evaluate how ex-
ploitable the agent is, we train another PPO agent against the
target agent. If the PPO algorithm converges to its optimal
strategy, the win rate of the agent is equal to the exploitabil-
ity of the target agent in imperfect recall settings.

The results are shown in Table 1. Compared with other
agents, the self-play agents are less exploitable, and do not
lose over 50 percent against the PPO algorithm. This re-
sult suggests that the obtained agents are not exploitable by
strategies that do not use the past histories of observations.

We observe the details of some games between the NFSP
agent and the PPO agent trained against the NFSP agent.
Figure 3 shows some screenshots of the game. The NFSP
agent first builds two melee attackers, next builds a range at-
tacker, and then rushes to the opponent’s base. Because of
the fog-of-war, agents cannot be aware of its opponent’s at-
tack until the opponent’s tanks get closer, and thus melee
attackers are suited for defense while range attackers are
suited for attacking. Hence, the behavior of the NFSP agent
is very rational for humans: first build some defense units
to prepare for its opponent’s attacking, secondly build an at-
tacking unit with keeping the previously built defense units,
and finally attack the opponent’s base with all tanks.

Agent Win rate
Random 0.71
AI-Simple 0.62
AI-Hit-and-Run 0.65
PPO against AI-Simple 0.80†

PPO against AI-Hit-and-Run 0.56
Raw self-play with PPO 0.45
NFSP with PPO 0.44

Table 1: Win rates of the trained PPO agent against each
AI. All agents are trained with 107 games except the results
with †, which means the number of training games is less
than 107. The self-play agents have the lowest win rate, and
hence they are less exploitable.

(a) (b)

Figure 3: Screenshots of a game between the NFSP agent
(red, bottom left) and the PPO agent trained against it (blue,
top right). The blue tanks are melee attackers and the green
tanks are range attackers. The NFSP agent (a) first builds a
melee attacker, which is suited for defense, then (b) builds
a range attacker, which is suited for attacking, and rushes to
the opponent’s base.

We show another example. In the game shown in Figure 4,
at the initial state the NFSP agent has a large disadvantage
due to the randomness of ELF games: it does not have a
barrack while its opponent does, and it does not know the
disadvantage because of the fog-of-war. Having the disad-
vantage, the NFSP agent is attacked by the opponent’s tanks,
but it builds a range attacker (suited for attacking) unit, and
successfully counterattacks with it. Because in this game
an agent must attack with all tanks it has, the NFSP agent
knows that the opponent has now no tanks. Although an
agent does not know or memorize the state of the opponent,
the NFSP agent successfully exploits the rule and estimates
the unknown state without any prior knowledge or even any
built-in rule-base AIs.

Pretraining NFSP with Raw Self-Play
In the previous experiments, we observe that the NFSP agent
successfully acquires a less exploitable strategy profile, but
the learning process is slower than other methods. In con-
trast, the raw self-play algorithm is fast but lacks the guar-
antee of convergence. If the NFSP agent can be pretrained
with the raw self-play algorithm, we can take the advantages
of both algorithms.

This insight is also seen in CounterFactual Regret Min-



(a) (b)

Figure 4: Screenshots of a game between the NFSP agent
(red, top right) and the PPO agent trained against it (blue,
bottom left). (a) The NFSP agent’s base is now very fragile
because of its opponent’s attack. (b) It builds a range attacker
(to attack) and not a melee attacker (to defend), because in
this settings agents cannot attack with a part of its tanks but
must attack with all tanks, and thus its opponent must have
now no tanks.

imization+ (CFR+) (Tammelin 2014). In a regret matching
algorithm, which is a basis of CFR+, the average strategy of
the regret-based strategies converges to a Nash equilibrium.
This schema is similar to the fictitious play: in a fictitious
play algorithm, we compute a best response strategy instead
of the regret-based strategy, and average them. In CFR+,
Tammelin (2014) uses delayed averaging, namely, accumu-
lates the strategies from the middle of them. It significantly
improves the result. The pretraining of NFSP is regarded as
a kind of delayed averaging, because in PPO we do not ac-
cumulate the strategies and then switch to NFSP and begin
to averaging them.

First we pretrain the RL model in NFSP with raw self-
play. The light-blue lines in Figure 5 show the result. Al-
though the learning is slightly faster than the NFSP agent, it
does not improve the performance as we expected. This re-
sult can be explained as follows: in NFSP, the SL component
averages the RL strategy and the RL component computes
the best response strategy to the SL strategy. When we pre-
train the RL strategy, the SL component can accumulate the
pretrained strategies, and thus its learning process is accel-
erated. However, because the RL component computes the
best response to the non-pretrained SL component, training
in the RL component is not accelerated at all, making it fail
to improve the performance.

To solve this problem, we also pretrain the SL model with
the same parameters used in the RL model. We use the πRL
head of the PPO agent to pretrain the πSL head of the NFSP
agent, and simply discard the VRL head of the PPO agent.
The purple lines in Figure 5 show the result. Although the
result is worse than the raw self-play, it successfully main-
tains the result of its base strategy, and is even slightly fine-
tuned from the strategy in the AI-Simple evaluation. This re-
sult suggests that we can extend the results from a faster but
more unstable self-play algorithm as pretraining for NFSP.

(a) Win rate against AI-Simple.

(b) Win rate against AI-Hit-and-Run.

Figure 5: Win rate of the pretrained agents with respect to the
amount of experience. The horizontal axis is log-scale. The
blue line shows the base self-play results, the light-blue line
is the NFSP whose RL component is pretrained, the purple
line is the NFSP whose both RL and SL components are
pretrained, and the red line is the non-pretrained NFSP. The
vertical black lines show the beginning of the pretraining.

Conclusion and Future Work
In this paper, we regard the Mini-RTS game as a two-player
zero-sum extensive-form game, and apply self-play meth-
ods. The obtained agent is less exploitable for the PPO al-
gorithm than other best response-based agents. We also ob-
serve that the obtained agent performs rationally to humans.

The contribution of this paper is that we show that NFSP
can be combined with policy gradient reinforcement learn-
ing and be applied to Mini-RTS, which can be a first step
toward solving more realistic and complex RTS games. We
also show that we can improve the scalability of NFSP by
pretraining the models with simple self-play using policy
gradients, which is faster but lacks the theoretical guarantee
of convergence. It significantly reduces the computational
time and could be applied even when the self-play algorithm
oscillates. However, the experimental results show that the
learning process of NFSP is much slower than raw self-play
with PPO, and actually raw self-play successfully acquires
reasonable strategies despite its lack of convergence guaran-
tees. We will further analyze the results and the differences
between NFSP and raw self-play methods.

In this paper we do not have the agents memorize past
histories. This makes the game essentially imperfect recall,



which breaks the assumption of the FSP. To solve this, we
could use a recurrent neural networks as a controller of the
RL component as in Hausknecht and Stone (2015). How-
ever, to ensure that the game is a perfect recall game, we
need to use the same memorizing architecture for the SL
reservoir replay buffer, which significantly reduces the size
of the buffer. We will also further investigate to solve this
problem as future work.
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