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Abstract
While two-player optimal pure strategy play of the jeop-
ardy games Piglet and Pig is known, 3-player optimal
play was unknown. In this article, we first compute op-
timal play for the 3-player jeopardy coin game Piglet,
and demonstrate a surprising possibility of coalition be-
tween players that have no direct interaction. Further,
we examine various unfair coin scenarios and find the
existence of multiple Nash equilibria. Finally, we turn
our attention to the 3-player jeopardy dice game Pig,
demonstrate the failure of value iteration to converge for
high enough goal scores, and conjecture the existence of
mixed strategy Nash equilibria for 3-player Pig.

Piglet
Piglet is a simple coin game played between two or more
players. “The object of Piglet is to be the first player to reach
10 points. Each turn, a player repeatedly flips a coin until
either a tail is flipped or else the player holds and scores the
number of consecutive heads flipped.” (Neller and Presser
2004)

Piglet is Neller and Presser’s coin simplification of the
dice game Pig, the simplest known folk ancestor of the jeop-
ardy dice game family. The commercial games Pass the Pigs
(a.k.a. Pigmania) and Farkle are perhaps the best known
games of this family.

One can represent a game state of Piglet as a 2-tuple (a, b)
where a and b are number of points remaining to reach the
winning goal score for the current player and their opponent,
respectively. Let k denote the turn total, i.e. the number of
consecutive heads flipped so far on a turn. A player’s play
policy is then a mapping π(a, b) to a hold value. Beneath this
hold value, the player continues to flip; at this hold value, the
player holds and scores that many points. Let us assume both
players play with optimal policy π∗. We can then describe
optimal play for 2-player Piglet through equations based on
the probability of winning P (a, b, k):
P (a, b, k)

=


1 if a = k

max

(
1− P (b, a− k, 0),
(1−P (b,a,0))+P (a,b,k+1)

2

)
otherwise
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As described in (Neller and Presser 2004), optimal pol-
icy may be computed with a value-iteration based method
that iteratively takes arbitrary initial probabilities for each
P (a, b, k), evaluates right-hand sides of the equations above
with these estimates, and computes better estimates of left-
hand side values. This process converges, yielding the fol-
lowing optimal hold values in playing Piglet for a goal score
of 10:

Figure 1: Optimal 2-player Piglet hold values where a and
b represent the distance from the goal score for the current
player and opponent, respectively, and k represents the turn
total at which the current player should hold.

In most cases, when one is ahead in score, one should hold
at 1. When one is behind, one generally holds at 2. However,
one should take greater chances when the opponent is close
to winning. In particular, when b = 1 then the optimal hold
value k = a, i.e. the current player should play to win in this
turn.

Three-Player Piglet
Although Neller and Presser proposed a value-iteration-
based method to compute the optimal strategy of the 2-
player version of Piglet and Pig (Neller and Presser 2004),



and of many Pig variants (Neller and Presser 2005), no anal-
ysis with more players has been done.

In this research, we first investigate the 3-player version of
Piglet. While we expected it to be a trivial generalization of
the 2-player version, it appears to be quite different. Indeed
3-player games are generally much harder to analyze. As
described for example in (Bewersdorff 2005, Chapter 43) for
a Poker-like game, coalitions between players are possible
in 3-player games, so it is difficult to even define “optimal
play”.

Playing Independently
Instead of extending the value iteration method used
in (Neller and Presser 2004), we design a new computation
method for Nash equilibria (NE) (Nash 1950) by exhaus-
tively listing the payoffs of each possible pure strategy for
each player. This allows us to compute the exact rational NE
of 3-player Piglet for the first time.

Score of players
The game, as described in (Neller and Presser 2005), starts
in a state (0, 0, 0) where the score of each player equals zero
and then all scores progressively increase until one player
reaches the goal G. In this paper, we use a reverse scoring
system in which each player initially starts with G and the
scores decrease until one player reaches 0.

The advantage of using such system is that the state of the
system is completely defined with a triplet (a, b, c). What-
ever the initial variable goal G, the target 0 is always the
same and therefore the state (a, b, c) is always the same.

Reward system
Multiple reward system could be considered when playing
this game. In this paper, we assume first one (1W2L) de-
scribed below, but other options could also be investigated.

Fixed reward system
• Partial ranking with one Winner, two Losers (1W2L). The

winning player gets a +2 reward and each loser gets a−1
reward.

• Full ranking:

– Game continues between the two remaining players.
The first winning player gets a reward of x (x > 0),
the second winning player gets a reward of y (y ≤ x),
and the loser gets a reward of −(x+ y).

– Game terminates after first winner; then players get re-
ward {x, y,−(x + y)}, or

{
z,− z2 ,−

z
2

}
in case of tie

between the two losers.

Adaptive reward system One could also design a more
complex system in which the reward of the winner depends
on the final score of other players (as in the game of UNO).
For example, let consider a game with goal G and assume
that player P1 reachesG while players P2 and P3 have score
s2 and s3. It is possible to take −s2 for P2 reward, −s3 for
P3 reward, and finally s2 + s3 for P1.

Such reward system is much more complex to analyze.
Techniques proposed in this paper cannot be applied easily.

Analysis P1vsP2vsP3 under 1W2L fixed
reward system

Definitions

Expected gain Let us fix a strategy Σ1, Σ2, and Σ3 for
each player P1, P2, and P3 respectively. Given these strate-
gies and an arbitrary current score (a, b, c), let us define
E(Σ1,Σ2,Σ3, i, j, a, b, c) as the expected gain of player Pi
given that player Pj is about to play (no coin-flip yet). To
simply notation, we will omit Σ1, Σ2, and Σ3 and simply
write E(i, j, a, b, c) when there is no ambiguity.

Optimal expected gain Assuming independent players
(i.e. no coalition), there exists strategy Σ∗ which corre-
sponds to a Nash Equilibrium of the game if all three players
follow Σ∗. Let us denotes byE∗ the expected gains when all
players follow Σ:

E∗(i, j, a, b, c) = E(Σ∗,Σ∗,Σ∗, i, j, a, b, c) (1)

Remark Due to symmetries, the following equalities hold:{
E∗(1, 1, a, b, c) = E∗(2, 2, c, a, b) = E∗(3, 3, b, c, a)
E∗(1, 2, a, b, c) = E∗(2, 3, c, a, b) = E∗(3, 1, b, c, a)
E∗(1, 3, a, b, c) = E∗(2, 1, c, a, b) = E∗(3, 2, b, c, a)

(2)
Any expected gain can be expressed when the first

player is about to play (i.e. using E∗(i, 1, ·, ·, ·) nota-
tions). To simplify notations, we use E∗i (·, ·, ·) as an alias
for E∗(i, 1, ·, ·, ·) and will write all equations using only
E∗i (a, b, c).

Analysis

Compute expected gains Given strategies Σ1, Σ2, and Σ3

for each player P1, P2, and P3 respectively, we can compute
expected gains progressively (as explained in (Neller and
Presser 2005) for iteration value method). Figure 2 depicts
a situation in which player P1 is about to play and current
score is (a, b, c). In score states, underlined number indicates
the player who has to play. The initial state is indicated by
the bold arrow and possible final states are drawn in bold.
While score remains (a, b, c), each player is trying to holds
at α, β, and γ heads respectively. These values α, β, and γ
are given by strategies Σ1, Σ2, and Σ3 respectively.

Since the starting state is (a, b, c), we want to compute
E(i, 1, a, b, c) for 1 ≤ i ≤ 3. To do so, we only need to
knowE(i, 2, a−α, b, c),E(i, 3, b−β, c), andE(i, 1, a, b, c−
γ) for all 1 ≤ i ≤ 3. Solving the simple Markov chain
leads to the following equations, that can be used to compute
the expected gains for each player given a strategy triplet
(Σ1,Σ2,Σ3).



a,b,c

a,b,c

a,b,ca− α,b,c

a, b− β,c
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Figure 2: From score (a, b, c) until some player successfully holds, when P1, P2, and P3 holds at α, β, and γ heads respectively.

(3)

∀i ∈ {1, 2, 3}E(i, 1, a, b, c)

=
pαE(i, 2, a− α, b, c)

pα + (1− pα)pβ + (1− pα)(1− pβ)pγ

+
(1− pα)pβE(i, 3, a, b− β, c)

pα + (1− pα)pβ + (1− pα)(1− pβ)pγ

+
(1− pα)(1− pβ)pγE(i, 1, a, b, c− γ)

pα + (1− pα)pβ + (1− pα)(1− pβ)pγ

Compute NE expected gains Theoretically, it is easy to
find the optimal strategy Σ∗; it is sufficient to compute ex-
pected gainsE(Σ,Σ,Σ, ·, ·, ·, ·, ·) for all possible Σ and then
find which strategy/strategies correspond to a Nash Equilib-
rium. It is of course impossible to do in practice, even for
small instances of the game (except when the goal is 1 or
maybe 2).

We can use Figure 2 to help us and compute progressively
the NE strategy. Let us consider a score triplet (a, b, c). Let
us assume that we already know partially the NE strategy
Σ, more precisely we already know the moves for all triplet
(a′, b′, c′) such that a′ + b′ + c′ < a+ b+ c. It implies that
we already know the expected gains E∗(i, 2, a − α, b, c),
E∗(i, 3, b−β, c), and E∗(i, 1, a, b, c−γ) for 1 ≤ i ≤ 3 and
1 ≤ α ≤ a, 1 ≤ β ≤ b, and 1 ≤ γ ≤ c.

Given the score triplet (a, b, c), player P1 can choose
among a strategies; he can try to reach either 1 head, or
2 heads, . . . , or a heads. Similarly players P2 and P3 can
choose among b and c strategies respectively. There are
therefore abc triplet of strategies to analyze. Using Equa-
tions 3, we can compute the expected gains for each player
from state (a, b, c) assuming that players play strategies α,
β, and γ respectively.

Comparing these abc options, we can find (one of) the
Nash Equilibrium which corresponds to a triplet of strategies
(α∗, β∗, γ∗).

Results
Figure 3 shows the expected gain of each player when a win
is rewarded +2 and a loss −1, for goal scores from 1 to 30.
Without any surprise, expected gains decrease according to

player order. Note that the gains are not monotonic, e.g. the
expected gain of Player 2 decreases slightly when the goal
score goes from 3 to 4.
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Figure 3: Expected gain versus goal score for three players
using NE strategy.

Playing with Coalitions
Our computation method allows us to consider different ob-
jectives for the players. Assuming maxn play, i.e. that each
player seeks to maximize their expected utility, we obtain
the results of the “Playing Independently” section, yet if we
instead assume that two players seek to minimize the ex-
pected utility of the third, our computations show that such
two-player coalitions are possible and effective in the game
of Piglet.

Figure 4 shows the expected gain of Player 1 with and
without a coalition of Players 2 and 3 for different goal
scores. Though the difference is small, a coalition between
Players 2 and 3 is an effective possibility above a goal score
of 4 points. When Players 2 and 3 collude against Player 1,



the expected gain of Player 1 decreases. It is worth mention-
ing that the expected gain of Player 3 also decreases in this
coalition, representing self-sacrifice for the coalition’s goal.
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Figure 4: Expected gain of P1 with/without coalition of P2
and P3.

This possibility of coalitions is surprising because players
have no direct interaction and thus no direct way to help each
other in a game of Piglet. Still, coalitions are possible be-
cause contentment with a coalition partner winning changes
play decisions. For example, consider a situation where two
players in a coalition are leading a third they are cooperat-
ing against. Under normal non-coalition circumstances, the
two players would aggressively push each other to greater
risk-taking to be first to the goal. However, if their common
objective is to beat the third player, both can more conserva-
tively with respect to their common adversary.

While not so absolute, this can be viewed as a probabilis-
tic generalization of the “Kingmaker scenario”. A player
trailing the leader may cooperate/compete with the leader
to make that leader’s victory more/less likely. While this ef-
fect is not large, it is nonetheless interesting that two play-
ers who collude against a third across games of Piglet can
achieve better performance than the third player on average.

Playing with a biased coin
We also computed what happens when playing Piglet with
a biased coin. Figure 5 shows the expected gain of Player 1
as a function of the probability p of flipping a Head. Each
curve corresponds to a given goal score G.

Figure 5 shows that when the probability of flipping a
Head increases, the first player has globally a higher proba-
bility of reaching the goal score first. This is not surprising,
since a greater chance of flipping a Head is likely to help
the player increase its score faster. However, it is counter-
intuitive that this expected gain is not monotonic with re-
spect to the Head probability. For example, for a goal score
G = 10 (red curve), Player 1’s expected gain is higher when
p = 0.45 than when p = 0.5.

Also in Figure 5, some curves for different goal scores
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Figure 5: Each curve corresponds to a fixed goal G. Top
curve is for G = 1, green curve is for G = 3, orange curve
is for G = 5, red curve is for G = 10.

cross at some points. As noted in the “Playing Indepen-
dently” section, this shows that the expected gain of Player
1 does not always monotonically decrease as the goal in-
creases.

Some parts of the curves are missing in Figure 5. The rea-
son is that for these instances of the game, there are multiple
Nash equilibria with different payoffs, and thus no single
optimal solution. Which solution concept to prefer is under
consideration.

Two-Player Pig
The game of Pig is a simple jeopardy dice game in which the
objective is to be the first player to score at least 100 points.
Each turn, a player repeatedly rolls a die until either a 1 is
rolled or the player holds and scores the sum of the rolls (i.e.,
the turn total). At any time during a player’s turn, the player
is faced with two choices: roll or hold. If the player rolls a
1, the player scores nothing and it becomes the opponent’s
turn. If the player rolls a number other than 1, the number
is added to the player’s turn total and the player’s turn con-
tinues. If the player instead chooses to hold, the turn total
is added to the player’s score and it becomes the opponent’s
turn.

In forming optimality equations for two-player Pig, let
Pi,j,k be the player’s probability of winning if the player’s
score is i, the opponent’s score is j, and the player’s turn to-
tal is k. In the case where i+k ≥ 100, Pi,j,k = 1 because the
player can simply hold and win. In the general case where
0 ≤ i, j < 100 and k < 100 − i, the probability of an
optimal player winning is

Pi,j,k = max (Pi,j,k,roll, Pi,j,k,hold)

where Pi,j,k,roll and Pi,j,k,hold are the probabilities of win-
ning if one rolls and holds, respectively. These probabilities



are given by:

Pi,j,k,roll =
1

6
((1− Pj,i,0) +

∑
2≤r≤6

Pi,j,k+r)

Pi,j,k,hold = 1− Pj,i+k,0
The probability of winning after rolling a 1 or holding

is the probability that the other player will not win begin-
ning with the next turn. All other outcomes are positive and
dependent on the probabilities of winning with higher turn
totals.

The value-iteration-based algorithm of (Neller and
Presser 2004) can then solve for all state win probabilities,
and derives the following optimal roll/hold boundary:

Figure 6: Optimal 2-player Pig roll/hold boundary, where a
player playing a state should roll or hold if they are inside or
outside of the surface, respectively.

Three-Player Pig
The same value-iteration-based approach applied to 3-player
Pig converged to an optimal policy for goal scores up to 61,
but did not converge for goal scores observed at 62 at above.
Our equations were formed as above, but with j1 and j2 rep-
resenting the scores of the next player and the player there-
after respectively in the 3-player game. Variables i and k
retain the same interpretation as above.

The main difference is that we must compute a win prob-
ability distribution over all players for each non-terminal
game state. Let Pi,j1,j2,k[p] be the probability that the player
p turns into the future will win. Thus, with this 0-based in-
dexing, p = 0, 1, and 2 refers to the current, next, and next
next players, respectively.

Pi,j1,j2,k = max (Pi,j1,j2,k,roll, Pi,j1,j2,k,hold)

Pi,j1,j2,k,roll =
1

6
(right rotate(Pj1,j2,i,0)+

∑
2≤r≤6

Pi,j1,j2,k+r)

Pi,j1,j2,k,hold = right rotate(Pj1,j2,i+k,0)

In-place updates: Performing in-place updates for a
goal score of 62 leads to a cycle of policy changes taking
turns alternating between roll and hold for (i, j1, j2) values
(0, 1, 30) and (30, 0, 1).

Separate policies: Next, we experimented with value-
iterating separate policies for each player. Even though
player decisions are symmetric, we were interested to see
if differing policies could settle to an equilibrium. However,
this approach also had non-convergence cyclic behavior for
a goal score of 62 for states (0, 28, 36) and (28, 36, 0).

Randomized updates: Next, we added randomization to
the previous experiment to see if the strict ordering of up-
dates was responsible for the observed policy update cy-
cling. Selection of non-terminal states for a value-iteration
update was entirely randomized. Interestingly, the same
(0, 28, 36) and (28, 36, 0) cycle appears, albeit with less fre-
quent flip-flopping.

Gamma decay: Bellman’s equations are not guaranteed
to converge when one has either unbounded rewards or no
discounting, i.e. discount factor γ = 1. We experimented
with γ = .9. This only changed our cycle to occur between
(0, 6, 24) and (24, 0, 6).

Regret minimization: After all prior attempts, we con-
jectured that it may be the case that no pure Nash equi-
librium exists for a goal score of 62. To test this, we
implemented a value-iteration-based approach that updates
mixed strategies through regret minimization. This approach
also cycled output policies with our original pair of states
(0, 1, 30) and (30, 0, 1), that is, the output mixed strategy al-
ternately fluctuates between preferring roll and hold for each
of these two states. It may be that this algorithm would con-
verge to an equilibrium of an equiprobable choice of roll or
hold for these states, but we have not observed such conver-
gence at this time.

We still conjecture that a mixed Nash equilibrium exists
for 3-player Pig with a goal score of 62. What has become
clear is that the dynamics of these iterative approaches leads
us into repeatable policy orbits despite all of these variations.
Work to determine a best approach to solving 3-player Pig
is still in progress.

Conclusion
While Piglet is one of the simplest jeopardy games, optimal
3-player strategy is quite complex. We computed Nash equi-
libria for many instances of 3-player Piglet and observed that
coalitions between players are possible. Also, in some cases,
there are multiple NE with different payoffs, so that it is not
obvious what should be considered “optimal play”. There
are still many open questions about 3-player Piglet.

Three-player Pig remains unsolved. At this point, we are
inclined to believe that iterative approaches of many types



tend to orbit among approximately-optimal policies. It may
be that a different class of solution technique is required for
such problems.

An interesting question to consider is whether there are
potential relationships between the policy orbits observed
for 3-player Pig, and the concept of coalitions seen in 3-
player Piglet. Whether or not the flip-flopping of 3-player
Pig policies corresponds to a type of making and breaking
of coalitions is a possible future question to address.

Just as 2-player Pig offered up surprisingly complex opti-
mal play policy for such a simple ruleset, 3-player Pig offers
surprises as we seek its solution.
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