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Abstract

Recently, there have been several high-profile achieve-
ments of agents learning to play games against humans
and beat them. We propose an approach that instead
addresses how the player experiences the game, which
we consider to be a more challenging problem. In this
paper, we present an alternative context for developing
AI that plays games. Specifically, we study the prob-
lem of creating intelligent game agents in service of
the development processes of the game developers that
design, build, and operate modern games. We high-
light some of the ways in which we think intelligent
agents can assist game developers to understand their
games, and even to build them. Our main contribution
is to propose a learning and planning framework that is
uniquely tuned to the environment and needs of mod-
ern game engines, developers and players. Our game
agent framework takes a few steps towards addressing
the unique challenges that game developers face. We
discuss some early results from an initial implementa-
tion of our framework.

Artificial intelligence; artificial game agent; rein-
forcement learning; imitation learning; deep learning;
model-based learning; game design; game playtesting;
non-player character (NPC).

Introduction
The history of artificial intelligence (AI) can be mapped
by its achievements playing and winning various games.
From the early days of Chess-playing machines to the
most recent accomplishments of Deep Blue and Al-
phaGo, AI has advanced from competent, to competi-
tive, to champion in even the most complex games.

Games have been instrumental in advancing AI, and
most notably in recent times, reinforcement learning
(RL). IBM Deep Blue was the first AI agent who
beat the chess world champion, Gary Kasparov (Deep
Blue 1997). A decade later, Monte Carlo Tree Search
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(MCTS) (Coulom 2006; Kocsis and Szepesvári 2006)
was a big leap in solving games. MCTS agents for play-
ing Settlers of Catan were reported in (Szita, Chaslot,
and Spronck 2009; Chaslot et al. 2008) and shown to
beat previous heuristics. Other work compares multi-
ple approaches of agents to one another in the game
Carcassonne on the two-player variant of the game and
discusses variations of MCTS and Minimax search for
playing the game (Heyden 2009). MCTS has also been
applied to the game of 7 Wonders (Robilliard, Fonlupt,
and Teytaud 2014) and Ticket to Ride (Huchler 2015).

Recently, DeepMind researchers demonstrated that
deep neural networks (DNNs) combined with MCTS
could lead to AI agents that play Go at a super-human
level (Silver et al. 2016), and solely via self-play (Silver
et al. 2017; Silver et al. 2018). Subsequently, OpenAI
researchers showed that AI agents could learn to coop-
erate at a human level in Dota 2 (OpenAI Five 2018).

The impressive recent progress on RL to solve games
is partly due to the advancements in processing power
and AI computing technology.1 Further, deep Q net-
works (DQNs) have emerged as a general representation
learning framework from the pixels in a frame buffer
combined with Q function approximation without need
for task-specific feature engineering (Mnih et al. 2015).
The design of a DQN and setting the hyperparame-
ters is still a daunting task. In addition, it takes hun-
dreds of thousands of state-action pairs for the agent
to reach human-level performance. Applying the same
techniques to modern games would require obtaining
and processing even more state-action pairs, which is
infeasible in most cases because speeding up the game
engine may not be possible and the game state may be
difficult to infer from the frame buffer. The costs asso-
ciated with such an approach may be too high for many
applications, not justifying the benefits.

On modern strategy games, DeepMind and Blizzard
showed that existing techniques fall short even on learn-
ing the rules of StarCraft II (Vinyals et al. 2017). While
breaking the state space and action space into a hi-
erarchy of simpler learning problems has shown to be

1The amount of AI compute has been doubling every 3-4
months in the past few years (AI & Compute 2018).



promising (Vinyals et al. 2017; Pang et al. 2018), ad-
ditional complications arise when building agents for a
modern game that is still under development. Some of
these challenges are:
1. The game state space is huge, with continuous at-

tributes, and is only partially observable to the agent.
2. The set of available actions is huge, parametric,

partly continuous, and potentially unknown to the
agent rendering a direct application of MCTS infea-
sible.

3. The game itself is dynamic in the design and de-
velopment stage, and multiple parameters and at-
tributes (particularly related to graphics) may change
between different builds.

4. The games are designed to last tens of millions of
timesteps2 leading to potentially long episodes, and
the manner the player engages with the game envi-
ronment impacts the gameplay strategy.3

5. Multiple players may interact in conflict or cooper-
ation leading to an exploding state space and non-
convergence issues due to invalidation of the Markov
assumption in a multi-agent learning environment.

6. Winning isn’t everything, and the goal of the agent
could be to exhibit human-like behavior/style to bet-
ter engage human players, making it non-trivial to
design a proper rewarding mechanism.
The idea of using AI techniques to augment game

development and playtesting is not new. Algorith-
mic approaches have been proposed to address the is-
sue of game balance, in board games (De Mesen-
tier Silva et al. 2017; Hom and Marks 2007) and card
games (Krucher 2015; Mahlmann, Togelius, and Yan-
nakakis 2012). More recently, (Holmgard et al. 2018)
builds a variant of MCTS to create a player model for
AI Agent based playtesting. These techniques are rel-
evant to creating rewarding mechanisms for mimicking
player behavior.

Another line of research focuses on investigating ap-
proaches where AI and machine learning can play the
role of a co-designer, making suggestions during devel-
opment (Yannakakis, Liapis, and Alexopoulos 2014).
Tools for creating game maps (Liapis, Yannakakis, and
Togelius 2013) and level design (Smith, Whitehead, and
Mateas 2010; Shaker, Shaker, and Togelius 2013) are
also proposed. Other approaches have explored AI for
designing new games. (Browne and Maire 2010) gen-
erates entirely new abstract games by means of evolu-
tionary algorithms. (Salge and Mahlmann 2010) relates
the game design to the concept of relevant information.

2A timestep is the unit time where the agent takes an
action, its observation is updated, and a reward signal is
sensed.

3In a game that is designed to last many months or
years, the player is not expected to be taking actions at
all timesteps. Rather, the player’s best strategy depends on
the level of their engagement with the game.

(Smith, Nelson, and Mateas 2010) addresses the be-
havior emanating from the design by having an engine
capable of recording play traces. (Treanor et al. 2015)
proposes an ideation technique to embed design pat-
terns in AI based game design. (Zhu, Wang, and Zyda
2018) uses a measure for similarity between game events
to transfer different levels across games. See (Togelius
et al. 2011; Summerville et al. 2018) for a survey of
these techniques in game design.

In the next section, we make the case for using AI as
more of a tool to help designers tune their game, rather
than build an agent with super-human performance or
in order to create a game (or a part thereof).

Playtesting Game Agents
While achieving optimal super-human gameplay using
modern RL techniques is impressive, our goal is to train
agents that can help game designers ensure their game
provides players with optimal experiences. As it is not
obvious to define a reward function that abstracts an
optimal experience, this problem does not necessarily
lend itself to a traditional RL formulation. For instance,
we considered the early development of The Sims Mo-
bile, whose gameplay is about “emulating life”: players
create avatars, called Sims, and conduct them through
a variety of everyday activities. In this game, there is no
single predetermined goal to achieve. Instead, players
craft their own experiences, and the designer’s objective
is to evaluate different aspects of that experience.

To validate their design, game designers conduct
playtesting sessions. Playtesting consists of having a
group of players interact with the game in the develop-
ment cycle to not only gauge the engagement of play-
ers, but also to discover elements and states that result
in undesirable outcomes. As a game goes through the
various stages of development, it is essential to con-
tinuously iterate and improve the relevant aspects of
the gameplay and its balance. Relying exclusively on
playtesting conducted by humans can be costly and in-
efficient. Artificial agents could perform much faster
play sessions, allowing the exploration of much more of
the game space in much shorter time. This becomes
even more valuable as game worlds grow large enough
to hold tens of thousands of simultaneously interacting
players. Games at this scale render traditional human
playtesting infeasible.

Recent advances in the field of RL, when applied
to playing computer games (e.g., (OpenAI Five 2018;
Mnih et al. 2015; Vinyals et al. 2017; Harmer et al.
2018)), assume that the purpose of a trained artificial
agent (“agent” for short) is to achieve the best possi-
ble performance with respect to clearly defined rewards
while the game itself remains fixed for the foreseen fu-
ture. In contrast, during game development the objec-
tives and the settings are quite different. The agents
can play a variety of roles with the rewards that are
not obvious to define formally, e.g., an objective of an
agent exploring a game level is different from forag-
ing, defeating all adversaries, or solving a puzzle. Also,



the game environment changes frequently between the
game builds. In such settings, it is desirable to quickly
train agents that help with automated testing, data
generation for the game balance evaluation and wider
coverage of the gameplay features. It is also desirable
that the agent be mostly re-usable as the game build is
updated with new appearance and gameplay features.
Following the direct path of throwing computational re-
sources combined with substantial engineering efforts at
training agents in such conditions is far from practical
and calls for a different approach.

In this paper, we propose a framework that supports
game designers with automated playtesting. We begin
by describing a training pipeline that is needed to be
able to universally apply this framework to a variety
of games. We then provide some of the solution tech-
niques that we have found useful in solving the problem.
Finally, we lay down our future roadmap.

Training Pipeline

The training pipeline consists of two key components:

• Gameplay environment refers to the simulated game
world that executes the game logic with actions sub-
mitted by the agent every timestep and produces the
next state.

• Agent environment refers to the medium where the
agent interacts with the game world. The agent ob-
serves the game state and produces an action. This
is where training occurs.

In practice, the game architecture can be complex and
it might be too costly for the game to directly com-
municate the complete state space information to the
agent at every timestep. To train artificial agents, we
create a universal interface between the gameplay en-
vironment and the learning environment.4 The inter-
face extends OpenAI Gym (OpenAI Gym 2016) and
supports actions that take arguments, which is neces-
sary to encode action functions and is consistent with
PySC2 (Vinyals et al. 2017; PySC2 2017). In addition,
our training pipeline enables creating new players on
the game server, logging in/out an existing player, and
gathering data from expert demonstrations. We also
adapt Dopamine (Bellemare et al. ) to this pipeline to
make DQN (Mnih et al. 2015) and Rainbow (Hessel et
al. 2017) agents available for training in the game. Ad-
ditionally, we add support for more complex preprocess-
ing other than the usual frame buffer stacking, which
we explicitly exclude following the motivation presented
in the next section.

4These environments are usually physically separated,
and hence, we prefer a thin (i.e., headless) client that sup-
ports fast cloud execution, and is not tied to frame render-
ing.

Solution Techniques
State Abstraction
The use of frame buffer as an observation of the game
state has proved advantageous in eliminating the need
for manual feature-engineering in Atari games (Mnih et
al. 2015). However, to achieve the objectives of RL in a
fast-paced game development process, the drawbacks of
using frame buffer outweigh its advantages. The main
considerations which we take into account when decid-
ing in favor of a lower-dimensional engineered represen-
tation of game state are:

(a) During almost all stages of the game development,
the game parameters are evolving on a daily basis.
In particular, the art may change at any moment and
the look of already learned environments can change
overnight. Hence, it is desirable to train agents using
features that are more stable to minimize the need
for retraining agents.

(b) The gameplay environment and the learning envi-
ronment usually reside in physically separate nodes.
Naturally, closing the RL state-action-reward loop in
such environments requires a lot of network commu-
nication. Presence of frame buffers as the represen-
tative of game state would significantly increase this
communication cost whereas derived game state fea-
tures enable more compact encodings.

(c) Obtaining an artificial agent in a reasonable time (a
few hours at most) usually requires that the game be
clocked at a rate much higher than the usual game-
play speed. As rendering each frame takes a signifi-
cant portion of every frame’s time, overclocking with
rendering enabled is not practical. Additionally, mov-
ing large amount of data from GPU to main memory
drastically slows down the game execution and can
potentially introduce simulation artifacts, by inter-
fering with the target timestep rate.

(d) Last but not least, we can leverage the advantage of
having privileged access to the game code to let the
game engine distill a compact state representation
that could be inferred by a human player from the
game and pass it to the agent environment. By do-
ing so we also have a better hope of learning in envi-
ronments where the pixel frames only contain partial
information about the the state space.
The compact state representation could include the

inventory, resources, buildings, the state of neighboring
players, and the distance to target. In an open-world
first-person shooter game the features may include the
distance to the adversary, angle at which the agent ap-
proaches the adversary, presence of line of sight to the
adversary, direction to the nearest waypoint generated
by the game navigation system. The feature selection
may require some engineering efforts but it is logically
straightforward after the initial familiarization with the
gameplay mechanics, and often similar to that of CPU
AI sensing, which will be informed by the game de-
signer. We remind the reader that our goal is not to



train agents that win but to simulate human-like behav-
ior, so we train on information that would be accessible
to a human player.

Open-Loop Control
Before tackling the challenging problem of closed-loop
RL, we consider a more simplified case that applies
when the game is fully observable and the game dy-
namics are fully known. This simplified case allows
for the extraction of a lightweight model of the game.
While this requires some additional development effort,
we can achieve a dramatic speedup in training agents by
avoiding RL and using open-loop planning techniques
instead. We then translate the learning back into the
actual game.

As the first case study, we consider a mobile game
with known dynamics, where each player can pursue
different careers, and as a result will have a different
experience. In the use-case that we consider in this
section, the designer’s goal is to measure the impact
of high-level decisions on the progression path of the
player. We refer the interested reader to (Silva et al.
2018) for a more complete study of this problem.

The abstract model of the deterministic state tran-
sition of the game provides full knowledge of the game
state. The lightweight model also allows storage in
memory (or on a disk), and loading it back within the
same game session, all with negligible overhead. Such
simplicity of the model manipulation enables search-
based algorithms with the ability to look ahead and op-
erate on game states using graph-based algorithms. In
particular, we use the A* algorithm as it enables com-
putation of an optimal strategy by exploring the state
transition graph instead of the more expensive iterative
processes, such as dynamic programming,5 and even
more expensive Monte Carlo search based algorithms.
The customizable heuristics and the target states cor-
responding to different gameplay objectives, offered by
A*, provide sufficient control to conduct various exper-
iments and explore multiple aspects of the game.

We validate our approach against (approximately)
solving a full optimization over the entire game strategy
space using evolution strategies, where the agent opti-
mizes for a utility function that selects between avail-
able actions.6

We compare the number of actions that each ap-
proach needs to achieve the goal for each career in Fig-
ure 1. We emphasize that our goal is to show that a
simple planning method, such as A*, can sufficiently
satisfy the designer’s goal in this case. We can see that

5Unfortunately, in the dynamic programming every node
will participate in the computation while it is often true
that most of the nodes are not relevant to the shortest path
problem in the sense that they are unlikely candidates for
inclusion in a shortest path (Bertsekas 2005).

6Coincidentally, OpenAI has recently advocated for evo-
lution strategies as an alternative for reinforcement learning
in training agents to play games (Salimans et al. 2017).

Figure 1: Comparison of the average amount of ca-
reer actions (appointments) to reach the goal using A*
search and evolution strategy adapted from (Silva et al.
2018).

the more expensive optimization based evolution strat-
egy reaches a style of gameplay that is similar to the
much simpler A* search.

The largest discrepancy arises for the Barista career,
which might be explained by the fact that this career
has an action that does not reward experience by itself,
but rather enables another action that does it. This
action can be repeated often and can explain the high
numbers despite having half the number of levels. Also,
we observe that in the case of the medical career, the
2,000 node A* cutoff has led to a suboptimal solution.

When running the two approaches, another point of
comparison can be made: how many sample runs are
required to obtain statistically significant results? We
ran 2,000 runs for the evolution strategy while it is no-
table that the A* agent learns a deterministic playstyle,
which has no variance. On the other hand, the agent
trained using an evolution strategy has a high variance
and requires a sufficiently high number of runs of the
simulation to approach a final reasonable strategy (Silva
et al. 2018).

In this experiment, we were able to create a simula-
tion model for the game mechanics, and we found that
its benefits outbalance the time needed to run the actual
simulations to answer different questions raised by the
game designer. However, it is worth reiterating that the
availability of a game model as a separate application
is not universally expected due to the huge state space,
complex game dynamics, and a weakly structured het-
erogeneous action space of high dimensionality. The
next section discusses solution techniques to solve these
problems using the state-of-the-art approaches.

Model-Free Control
When the game dynamics are unknown, the go-to
method has been RL (and particularly DQN). In this
section, we show how such model-free control tech-
niques fit into the paradigm of training agents to play
modern games.

In our second case study, we consider a mobile game
designed to engage many players for months exhibiting
all of the challenges discussed in the introduction. The



designer’s primary concern is to test how quickly an
expert player can possibly progress in the game.

The state consists of ∼50 continuous and ∼100 dis-
crete state variables. The set of possible actions α is a
subset of a space A, which consists of∼25 action classes,
some of which are from a continuous range of possible
action values, and some are from a discrete set of action
choices. The agent has the ability to generate actions
a ∈ A but not all of them are valid at every game state
since α = α(s, t), i.e., α depends on the timestep and
the game state. Moreover, the subset α(s, t) of valid
actions is only partially known to the agent.

We rely on the game server to validate whether
a submitted action is available because it is imprac-
tical to encode and pass the set α of available ac-
tions to the agent at every timestep. While the prob-
lem of a huge state space (Hoey and Poupart 2005;
Spaan and Vlassis 2005; Porta et al. 2006), a continuous
action space (Lillicrap et al. 2016), and a parametric ac-
tions space (Hausknecht and Stone 2015) could be dealt
with, these techniques are not directly applicable to our
problem. Finally, the game is designed to last tens of
millions of timesteps, taking the problem of training
a functional agent in such environment outside of the
domain of previously explored problems.

We study game progression while taking only valid
actions. As we already mentioned, the set of valid ac-
tions α is not fully determined by the current obser-
vation, and hence, we deal with a partially observable
Markov decision process (POMDP). Given the practical
constraints outlined above, it is infeasible to apply deep
reinforcement learning to train agents in the game in its
entirety. In this game, we show progress toward train-
ing an artificial agent that takes valid actions and pro-
gresses fast in the game like expert human players. We
connect this game to our training pipeline with DQN
and Rainbow agents, where we use a network with two
fully connected hidden layers and ReLU activation.

We create an episode by setting an early goal state in
the game that takes an expert human player∼5 minutes
to reach. We let the agent submit actions to the game
server every second. We reward the agent with ‘+1’
when they reach the goal state, ‘-1’ when they submit
an invalid action, ‘0’ when they take a valid action,
and ‘-0.1’ when they choose the “do nothing” action.
The game is such that at times the agent has no other
valid action to choose, and hence they should choose
“do nothing”, but such periods do not last more than a
few seconds.

We consider two different versions of the observation
space, both extracted from the game engine. The first is
what we call the “complete” state space. The complete
state space contains information that is not straight-
forward to infer from the real observation in the game
and is only used as a baseline for the agent. The polar
opposite of this state space could be called the “naive”
state space, which only contains straightforward infor-
mation. The second state space we consider is what we
call the “augmented” observation space, which contains

Figure 2: Average cumulative reward (return) in train-
ing and evaluation for the agents as a function of the
number of iterations. Each iteration is worth ∼60 min-
utes of gameplay. The trained agents are: (1) a DQN
agent with complete state space, (2) a Rainbow agent
with complete state space, (3) a DQN agent with aug-
mented observation space, and (4) a Rainbow agent
with augmented observation space.

information from the “naive” state space and informa-
tion the agent would reasonably infer and retain from
current and previous game observations. Note that cur-
rent RL techniques would have had difficulty in infer-
ring this information from the frame buffer pixels which
only constitute a partially observable state space.

We trained four types of agents as shown in Figure 2.
As expected, the Rainbow agent converges to a bet-
ter performance level while with more training episodes
compared to the DQN agent. We believe that this is due
to the fact that we did not optimize the extra hyperpa-
rameters in Rainbow for the best performance, which
we intend to do in the future. We also see that the
augmented observation space makes the training slower
and also results in a worse performance on the final
strategy. We intend to experiment with shaping the
reward function for achieving different play styles. We
also intend to investigate augmenting the replay buffer
with expert demonstrations for faster training.

While we achieved a certain level of success using
the outlined approach (streamlined access to the game
state, and direct communication of actions to the game,
followed by training using a deep neural network), we
observe that the training within the current paradigm
of RL remains costly. Specifically, even using the com-
plete state space, it takes several hours to train a model
that achieves a level of performance expected of an ex-



pert human player on this relatively short episode. This
calls for the exploration of complementary approaches
to augment the training process.

Model-Based Control & Imitation Learning
We have shown the value of simulated agents in a fully
modeled game, and the potential of training agents in
a complex game to model player progression. We can
take these techniques a step further and make use of
agent learning to help build the game itself. Instead of
applying RL to capture player behaviors, we consider
an approach to gameplay design where the player agents
learn behavior policies from the game designers.

To bridge the gap between the agent and the designer,
we introduce imitation learning (IL) to our system. In
the present application, IL allows us to translate the
intentions of the game designer into a primer and a
target for our agent learning system. Learning from ex-
pert demonstrations has traditionally proved very help-
ful in training agents. In particular, the original Alpha
Go (Silver et al. 2016) used expert demonstrations in
training a deep Q network. There are also other cases
where the preferred solution for training agents would
utilize a few relatively short demonstration episodes
played by the software developers or designers at the
end of the current development cycle.

As our last case study, we consider training artificial
agents in an open-world video game, where the game
designer is interested in training non-player characters
in the game that follow certain behavioral styles. We
need to efficiently train an agent using demonstrations
capturing only a few key features. The training process
has to be computationally inexpensive and the agent
has to imitate the behavior of the teacher(s) by mim-
icking their relevant style (in a statistical sense) for im-
plicit representation of the teacher’s objectives.

Casting this problem directly into the RL framework
is complicated by two issues. First, it is not straight-
forward how to design a rewarding mechanism for imi-
tating the style of the expert.7 Second, the RL training
loop often requires thousands of episodes to learn useful
policies, directly translating to a long training time.

We propose a three-component solution to the stated
problem.

• The first component is an ensemble of multi-
resolution Markov models capturing the style of the
teacher(s) with respect to key game features.

• The second one is a DNN trained as a supervised
model on samples bootstrapped from an agent play-
ing the game following the Markov ensemble.

• Lastly, we enable an interactive medium where the
game designer can take the controller back at any
time to provide more demonstration samples.
7While inverse RL aims at solving this problem, its ap-

plicability is not obvious given the reduced representation
of the huge state-action space that we deal with and the
ill-posed nature of the inverse RL problem.

Multi-resolution Markov agent. We start with
capturing the demonstration data which consists of a
few engineered features reported by the game at every
timestep. Total dimensionality of an individual frame
data is ∼20 variables with, some of them reported only
once every few timesteps. We also record actions that
are controller inputs from a human player. We intend
to provide a more complete description of this setup by
publishing a preprint of our internal report (Borovikov
and Harder 2018). The key point is that the data
from the demonstrations has low dimensionality and is
sparse, but sufficient to capture the main characteris-
tics of the core gameplay loop of a first person shooter
in an open world.

To build our Markov agent we use a direct approach
to style reproduction inspired by natural language pro-
cessing literature (see review (Zhai 2008)). The demon-
strations are converted to symbolic sequences using a
hierarchy of multi-resolution quantization schemes with
different levels of details for both the continuous data
and the discrete channels. The most detailed quan-
tization and higher order Markov models are able to
reproduce sequences of human actions in similar situa-
tions with high accuracy, thus capturing the gameplay
style. The coarsest level corresponds to a Markov agent
blindly sampling actions from the demonstrations. The
multi-resolution ensemble of Markov models provides
an initial way of generalizing the demonstration data.
The ensemble is straightforward to build and the in-
ference is essentially a look-up process. We observe
that even such a basic approach provided considerable
mileage towards solving the stated problem.

Bootstrapped DNN agent. We treat the existing
demonstrations as a training set for a supervised learn-
ing problem where we need to predict the next action
from a sequence of observed state-action pairs. This
approach has proved to be useful in pre-training of
self-driving cars (Montemerlo et al. 2006). Since our
database of demonstrations is relatively small, it is de-
sirable to generate more data by bootstrapping the
dataset for which we use our base Markov agent in-
teracting with the game.

Such a bootstrap process is easy to parallelize since
we can have multiple simulations running without the
need to cross-interact as in some learning algorithms
like A3C (Mnih et al. 2016). The generated aug-
mented data set is used to train a DNN that predicts
the next action from the already observed state-action
pairs. Due to partial observability, the low dimensional-
ity of the feature space results in fast training in a wide
range of model architectures, allowing a quick experi-
mentation loop. We converged on a simple model with
a single “wide” hidden layer for motion control channels
and a DNN model for discrete channels responsible for
turning on/off actions like sprint, firing, climbing. The
approach shows promise even with many yet unexplored
opportunities to improve its efficiency.



Figure 3: Model performance (as the ability to respond to the current state with an inferred action) during interactive
training from demonstrations in a proprietary open-world game.

Interactive learning. While bootstrapping can help
training a better model, the quality of the final trained
model is still limited by the amount of information con-
tained in the relatively small set of demonstrations.
Hence, it is highly desirable to obtain further informa-
tion from the game designer, particularly in unexplored
and underexplored parts of the state space where the
trained model has little hope of generalizing.

We find that such a direct approach provides an op-
portunity to make the entire process of providing the
demonstrations interactive. The interactivity entirely
comes from the compound hierarchical nature of the
initial ensemble of models, making it easy to add new
ones to the set of already existing sub-models. In prac-
tical terms, it enables adding new demonstrations to di-
rectly override or augment already recorded ones. This
allows a high level of interactivity for supporting newly
added features or updating the existing model other-
wise. The designer can directly interact with the game,
select a particular moment where a new demonstration
is required, adjust the initial location of the character
object, and run a short demonstration without reload-
ing the game. The interactivity eliminates most of the
complexity of the agent design process and brings down
the cost of gathering data from under-explored parts of
the state space.

A designer can start with the most basic gameplay,
e.g., approach the target, then add more elements, e.g.,

attack the target, followed by more sophisticated game-
play. To provide additional feedback to the designer, we
provide a (near) real-time chart showing how well the
current model generalizes to the current conditions in
the game environment.

An example of such interactive training chart is re-
ported in Figure 3. The prolonged period of training
may increase the size of the model with many older
demonstrations already irrelevant, not used for infer-
ence, but still contributing to the model size. Instead
of using rule-based compression of the resulting model
ensemble, we consider a DNN from the ensemble of
Markov models via a novel bootstrap using the game
itself as the way to compress the model representation
and strip off obsolete demonstration data. Using the
proposed approach, we train an agent that satisfies the
design needs in only a few hours of interactive training.

Table 1 illustrates the computational resources that
solving this problem with the outlined 3-step process
required as compared to training 1v1 agents in Dota
2 (OpenAI Five 2018). While we acknowledge that the
goal of our agent is not to play optimally against the op-
ponent and win the game, we observe that using model-
based training augmented with expert demonstrations
to solve the Markov decision process, in a game even
more complex than Dota 2, results in huge computa-
tional savings compared to an optimal reinforcement
learning approach.



Concluding Remarks
In this paper we have described our approach to game-
playing agents that considers the player experience over
the agent’s ability to win. We feel this is a more chal-
lenging but more beneficial route in understanding how
players interact with games, and how to modify the
games to change and improve player interaction. In
each of our three case studies, we give a simple example
of how this approach to game-playing agents can yield
valuable insight, and even drive the construction of the
game itself. We believe that this is just the beginning of
a long and fruitful exploration into experience-oriented
game-playing agents that will not only deliver radical
improvements to the games we play, but will be another
major milestone on the roadmap of AI.

Table 1: Comparison between OpenAI 1v1 Dota 2 Bot
(OpenAI Five 2018) training metrics and training an
agent via bootstrap from human demonstrations in a
proprietary open-world game. While the objectives of
the training are different, the environments are compa-
rable.9 The metrics below highlight the details of prac-
tical training of agents during the game development
cycle.

OpenAI Bootstrapped
1v1 Bot Agent

Experience ∼300 years ∼5 min
(per day) human

demonstrations
Bootstrap using N/A ×5-20
game client
CPU 60,000 CPU 1 local CPU

cores on Azure
GPU 256 K80 GPUs N/A

on Azure
Size of ∼3.3kB ∼0.5kB
observation
Observations 10 33
per second
of gameplay
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