
Learning Self-Game-Play Agents for Combinatorial Optimization Problems

Ruiyang Xu and Karl Lieberherr
CCIS/PRL

Northeastern University, Boston, MA 02115
Email: ruiyang@ccs.neu.edu, lieber@ccs.neu.edu

Abstract

Recent progress in self-game-play reinforcement learning
(RL) has shown remarkable performance on several board
games (e.g., Chess and Go) as well as video games (e.g.,
Atari games and Dota2). It is plausible to consider that RL,
starting from zero knowledge, might be able to gradually ap-
proximate a winning strategy after a certain amount of time
of training. In this paper, we do research on neural Monte-
Carlo-Tree-Search (neural-MCTS), an RL self-play learning
algorithm which has been applied successfully by DeepMind
to play Go and Chess at the super-human level. We try to
leverage the computational power of neural-MCTS to solve
a class of combinatorial optimization problems. We propose
a procedure to transform certain combinatorial optimization
problems into games. A specifically designed neural-MCTS
is then being applied to those games. The winning strategies
in those games correspond to the solution of the original op-
timization problem. We choose a specific problem (HSR, in
which the ground-truth policy can be computed efficiently) to
carry out the experiment so that, along with the ground truth,
a correctness measurement can be applied with a fine gran-
ularity during the experiment. Our experimental result indi-
cates that, though the algorithm works soundly on problems
with limited size, solving pure math problems of any size via
self-game-play with neural-MCTS is still inefficient, regard-
less of its superhuman performance in AlphaZero. Neverthe-
less, transforming a math problem into game-play and using
self-game-play agents to figure out a winning strategy can
still be a promising approach to tackle hard problems in the
future.

1 Introduction
The past several years have witnessed the progress and suc-
cess of reinforcement learning (RL) in the field of game-
play. The combination of classical RL algorithms with
newly developed deep learning techniques gives a stunning
performance on both traditional simple Atari video games
((Mnih et al. 2015)) and modern complex RTS games (like
Dota2 (Schulman et al. 2017)), and even certain hard board
games like Go and Chess. One common but outstanding fea-
ture of those learning algorithms is the tabula-rasa style of
learning. In terms of RL, all those algorithms are model-
free and learn to play the game with zero knowledge in the

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

beginning. Such tabula-rasa learning can be regarded as an
approach towards a general artificial intelligence.

In this paper, we transform a certain form of combina-
torial optimization problems (e.g., the Product Stress Test-
ing Problem HSRk,q) into games so that a game-play agent
can be leveraged to play the transformed game and solve
the original problem on a specific instance (e.g., HSR3,7).
In Fig. 9 you can see how two competitive agents called P
and OP gradually, but with setbacks (as in AlphaZero for
Chess), improve and jointly arrive at the winning strategy.
The tabula-rasa learning converges and solves a non-trivial
problem although the underlying game is fundamentally dif-
ferent from Go and Chess . If a human finds the solution
for HSR3,7 she must have a good understanding of how to
solve the problem for general n, k, q. Unfortunately, the neu-
ral networks don’t give us an understanding of the general
solution (yet).

One critical issue with those transformed games is that
they usually have a large state space as well as a sparse
reward function. Therefore, REINFORCE (Williams 1992)
style algorithms like DQN (Mnih et al. 2015) and even its
modern-day advanced variation PPO (Schulman et al. 2017)
can’t be applied to such kind of problems, because they all
require a ’dense’ reward function so that a feedback signal
is generated after each action. However, one can hardly de-
fine a reward function on games like Sokoban or Sudoku
where an agent has no idea whether the current action is
correct or not until a much later phase or the end of the
game. Imagination-Augmented Agents (I2As (Weber et al.
2017)), an algorithm invented by DeepMind, is used to han-
dle such complex games. Although the algorithm is well
performed, it is not model-free. Namely, one has to super-
vised train an imperfect but adequate model first, then use
that model to boost the learning process of a regular model-
free agent. Even though I2As, along with a trained model,
can solve games like Sokoban to some level, it can hardly be
applied to games where even the training data is limited and
hard to generate or label. In other words, a model-free learn-
ing algorithm is needed to play generally on different kinds
of games. So we turn to the neural-MCTS method used in
AlphaZero by DeepMind. To our knowledge, this kind of
neural-MCTS is the only tabula-rasa style algorithm which
can handle games with both large state spaces and sparse
rewards as well.

We make three main contributions: 1. We introduce a way
to transform certain combinatorial problems into two-phase
Zermelo games inspired by semantic games; 2. we imple-
mented a variant of the neural-MCTS algorithm specifically
designed for such kind of games; 3. we evaluate our al-
gorithm on a specifically chosen problem (i.e., HSR) for
which the winning strategy can be computed efficiently. Our
result shows that, for problems under a certain size, neural-
MCTS does find the optimal strategy, hence solving the orig-
inal optimization problem in a tabula-rasa style.

The remainder of this paper is organized as follows. Sec-
tion 2 presents essential preliminaries on neural-MCTS and
certain combinatorial optimization problems. Section 3 in-
troduces a general way to transform certain combinato-
rial optimization problems into two-phase games, where we
specifically discuss the transforming of the HSR game.
Section 4 gives our correctness measurement and presents
experimental results. 5 and 6 made a discussion and conclu-
sions.

2 Preliminaries
2.1 Monte Carlo Tree Search
The PUCT algorithm implemented in AlphaZero (Silver
et al. 2017b; 2017a) is essentially a neural-MCTS algo-
rithm which uses PUCB (Rosin 2011; Auger, Couetoux, and
Teytaud 2013) as its confidence upper bound (Kocsis and
Szepesvri 2006; Auer, Cesa-Bianchi, and Fischer 2002) and
uses the neural prediction Pφ(a|s) as the predictor. The algo-
rithm usually proceeds through 4 phases (S.E.R.B.) during
each iteration:

Select At the beginning of each iteration, the algorithm se-
lect a path from the root (current game state) to a leaf (either
a terminal state or a unvisited state) in the tree according to
the PUCB. Specifically, suppose the root is s0, we have:

ai−1 = arg max
a

[
Q(si−1, a) + cPφ(a|si−1)

√∑
a′ N(si−1, a′)

N(si−1, a) + 1

]

Q(si−1, a) =
W (si−1, a)

N(si−1, a) + 1

si = next(si−1, ai−1)

Expand Once the select phase ends at a non-terminal leaf,
the leaf will be fully expanded and marked as an internal
node of the current tree. All its children nodes will be con-
sidered as leaf nodes during next iteration of selection.

Roll-out Normally, starting from the expanded leaf node
chosen from previous phases, the MCTS algorithm uses a
random policy to roll out the rest of the game (Browne et al.
2012). The algorithm simulates the actions of each player
randomly until it arrives at a terminal state which means the
game has ended. The result of the game (winning informa-
tion or ending score) is then used by the algorithm as a result
evaluation for the expanded leaf node.

However, a random roll-out usually becomes time-
consuming when the tree is deep. A neural-MCTS algo-
rithm, instead, uses a neural network Vφ to make a prediction

of the result evaluation so that the algorithm saves the time
on rolling out.

Backup Backup is the last phase of an iteration where the
algorithm recursively backs-up the result evaluation in the
tree edges. Specifically, suppose the path found in the Select
phase is {(s0, a0), (s1, a1), ...(sl−1, al−1), (sl,)}. then for
each edge (si, ai) in the path, we update the statistics as:

Wnew(si, ai) = W old(si, ai) + Vφ(sl)

Nnew(si, ai) = Nold(si, ai) + 1

However, in practice, considering the +1 smoothing in the
expression of Q, the following updates are actually applied:

Qnew(si, ai) =
Qold(si, ai)×Nold(si, ai) + Vφ(sl)

Nold(si, ai) + 1

Nnew(si, ai) = Nold(si, ai) + 1

Once the given number of iterations has been reached, the
algorithm returns a vector of action probabilities of the cur-
rent state (root s0). And each action probability is computed
as π(a|s0) = N(s0,a)∑

a′ N(s0,a′)
. The real action played by the

MCTS is then sampled from the action probability vector π.
In this way, MCTS simulates the action for each player al-
ternatively until the game ends, this process is called MCTS
simulation (self-play).

An MCTS algorithm often consists of several simulations
(self-play). In each simulation. the algorithm will play one
complete game step by step. Each step was chosen by run-
ning several iterations of S.E.R.B. as mentioned above. And
for a neural-MCTS structure, the MCTS usually needs hun-
dreds of simulations to generate enough training data.

2.2 Combinatorial Optimization Problems
The combinatorial optimization problems being studied in
this paper can be described with the following logic state-
ment:

∃n ((∀x ∃y F (n, x, y)) ∧ (∀n′ > n ∃x ∀y ¬F (n′, x, y)))

In this statement, n is a number and x, y can be any in-
stance depending on the concrete problem. F is a predi-
cate on n, x, y. Hence the logic statement above essentially
means that there is a maximum number n such that for all
x, some y can be found so that the predicate F (n, x, y) is
true. Formulating those problems as logic statements is cru-
cial to transforming them into (semantic) games. Next, we
will introduce two specific examples of problems which can
be transformed into the given logic form.

Silver Ratio Our first example is a classical function op-
timization problem which involves to figure out the saddle
point of a 2-variable function: f(x, y) = xy + (1 − x)(1−
y2);x, y ∈ [0, 1]. The problem can be defined as:

z = min
x∈[0,1]

max
y∈[0,1]

f(x, y)

The solution of this problem can be derived through par-
tial derivatives, namely ∂

∂x
∂
∂yf(x, y) = 0. The result is

(x, y) = (5−
√
5

5 , 5−
√
5

2
√
5

) and the value z =
√
5−1
2 , known

as the silver ratio. Although this problem can be solved ef-
fectively with calculus, we are interested in solving it via a
game-play. Hence we rewrite it as the following logic state-
ment:

∃z ((∀x ∃y f(x, y) ≥ z) ∧ (∀z′ > z ∃x ∀yf(x, y) < z′))

Highest Safe Rung Our second example (which is used
as our experimental subject in this paper) is called “The
Highest Safe Rung (HSR) Problem” (Kleinberg and Tar-
dos 2006) (also known as “The Product Stress Testing Prob-
lem”): consider throwing jars from a specific rung of a lad-
der, the jars could either break or not. One has k jars and q
test chances to throw those jars, can one locate the highest
safe rung on the ladder?

The problem actually contains two nested subproblems:

1 Given limited resources (k,q), what is the highest lad-
der (i.e., the maximum number of rungs) one can handle?
It could be the case that the ladder has hundreds of rungs
while there are only a few jars and test chances so that the
resources are obviously insufficient. Now we define a predi-
cate H1

k,q(n) as “using k jars and q tests, one can locate the
highest safe rung on a ladder with n rungs”, and the sub-
problem can be rewritten as:

∃n ((H1
k,q(n)) ∧ (∀n′ > n ¬H1

k,q(n)))

2 The predicate H1
k,q(n) contains another problem: given

sufficient resources, how to figure out the optimal strategy of
testing so that the highest safe rung can be located. Likewise,
we define a predicate H2

k,q(x, π;n) as “using resources k, q,
one can find a policy π to locate any highest safe rung x on
a ladder with n rungs”. Then H1

k,q(n) can be rewritten as:

H1
k,q(n) := ∀x ∃π H2

k,q(x, π;n)

Therefore, once given the resources k, q, a whole HSR
problem can be represented as:

HSRk,q :=

∃n ((∀x ∃π Hk,q(x, π, n))∧(∀n′ > n ∃x ∀π¬Hk,q(x, π, n
′)))

where Hk,q(x, π, n) := H1
k,q(n) ∧H2

k,q(x, π;n).
The solution to a problem HSRk,q is a number N(k, q)

such that HSRk,q = True. To derive the solution theoret-
ically, we first look at two extreme cases: (i) there is no jar
to throw (i.e. k = 0). In this case, we assume the highest
safe rung is the first rung (the ground) so that even if there
is no jar, we know that a jar would not break on the ground.
In other words, we have N(0, q) = 1. (ii) there is the same
number of jars as the number of chances (i.e. k = q). In
this case, using the Pigeon Hole Principle, there are at most
2q possible testing sequences for all possible highest safe
rungs, or we can say N(q, q) = 2q . Also, notice that there
are only q chances of the test, therefore for any k > q there
are k − q jars one have no chance to use them, which also
means N(k, q) = N(q, q), k > q.

Given the two extreme conditions above, the general case
can be solved recursively by dividing the problem into two

subproblems. The reason behind the recursion is that if one
knows the highest ladder which one can be handled by
(k − 1, q − 1) and (k, q − 1), then one can just concate-
nate those two ladders together to get a higher ladder which
can exactly be handled by (k, q). On the other hand, if one
has been given a ladder of N(k, q) rungs, one can divide it
intoN(k−1, q−1) andN(k, q−1) by testing the first jar on
the concatenating point. If the jar broke, then we got k − 1
jars and q − 1 chances left, otherwise, we still got k jars left
but q − 1 chances.

Summarizing the analysis above, the solution for the HSR
problem can be represented efficiently with a Bernoulli’s
Triangle (Fig. 1).

Figure 1: Theoretical values for N(k, q), which can be
represented as a Bernoulli’s Triangle. In general, we have
N(k, q) = N(k − 1, q − 1) + N(k, q − 1), 0 < k < q and
N(0, q) = 1, N(k > q, q) = N(q, q) = 2q .

3 Transforming to Zermelo Games
3.1 General Formation
In this section, we will introduce our method to transform
combinatorial optimization problems into two-phase Zer-
melo games. It is called Zermelo because it is a two-player
finite zero-sum game with perfect information and no ties.
Leveraging the logic statement (see section 2.2) of the prob-
lem, the Zermelo game is based on a finite debate between
the two players. For the purpose of later contents, we in-
troduce two roles: the Proponent (P), who claims that the
statement is true, and the Opponent (OP), who argue that
the statement is false. The original problem can be solved if
and only if P is able to propose some optimal number n so
that a perfect OP cannot refute it. To understand the game
mechanism, let’s recall the logic statement in section 2.2:

∃n ((∀x ∃y F (n, x, y)) ∧ (∀n′ > n ∃x ∀y ¬F (n′, x, y)))

This statement implies a two phase debate game (Fig. 2):

Proposal Game This in the initial phase of the debate
game, in this phase, player P will propose a number n. Then

the player OP will decide whether to accept this n or reject
it. OP will make his decision based on the logic statement:

(∀x ∃y F (n, x, y)) ∧ (∀n′ > n ∃x ∀y ¬F (n′, x, y))

Or we can rewrite it in a separate form:

A ∧B

A := ∀x ∃y F (n, x, y)

B := ∀n′ > n ∃x ∀y ¬F (n′, x, y)

Specifically, OP tries to refute P by attacking either on the
statement A or B. OP will accept n proposed by P if OP
confirms A = False. OP will reject n if one is unable to
confirm A = False. In this case, OP treat n as non-optimal,
and propose a new n′ > n (in practice, for integer n, we
take n′ = n + 1) which makes B = False. to put it in
another way, B = False implies ¬B = True which also
means that OP claims ∀x ∃y F (n′, x, y) holds. Therefore,
the rejection can be regarded as a role-flip between the two
players, and in order to make the debate non-trivial, in the
following game, we require that P has to accept the new n′

and tries to figure out the corresponding y to defeat OP.

Refutation Game This is the phase where the two play-
ers actually search for evidence and construct strategies to
attack each other or defend themselves. Generally speaking,
regardless of the role-flip, we can treat the refutation game
uniformly: one player (Proponent) claims ∀x ∃y F (n, x, y)
holds for some n, the other player (Opponent) will refute this
claim by giving some instances of x so that ∀y ¬F (n, x, y)
holds. If the Proponent successfully figures out the excep-
tional y which makes F (n, x, y) holds, the Opponent loses
the game, otherwise, the Proponent loses. Also notice that,
in an extreme case where ∀x ∃y F (n, x, y) is theoretically
true and both of the players are perfect, the Proponent can
always win the game while the Opponent always loses the
game.

Notice that the general form of the debate game can al-
ready handle most cases of combinatorial optimization prob-
lem which has simple parameters (i.e. x, y). It is obvious that
for the Silver Ratio example, it is trivial to transform it into
this form of game-play. However, for problems which have
complex parameters (e.g. HSR where we have a policy π
under the existential quantifier), a further transform and re-
finement of the refutation game have to be applied, which
we will discuss in the next section.

3.2 HSR Game
In this section we introduce the HSR Game, our experi-
ment subject, which comes from the HSR problem (sec-
tion 2.2). By simply following the transforming method in
section 3.1, one can derive the game immediately (Fig. 3).
However, it is an abstract game because the refutation phase
requires a sample of π from some policy space, which is
complex. Therefore, a further transformation and refinement
of the HSR refutation game are needed.

Since the crux is on π the policy, it is reasonable to under-
stand the form of the policy at first. Recalling the definition
of the policy: a policy is a function which maps a game state

Figure 2: A general debate game where white nodes stand
for the Proponent and black nodes stand for the Opponent.
A role-flip happened after Opponent’s rejecting of n. The
refutation game can be treated uniformly where the first
player is the Opponent and the second one is the Propo-
nent. The Opponent wins if and only if the Proponent fails to
find any y to make F (n, x, y) holds, hence the game result
R = ¬F (n, x, y).

into an action, in this problem, an action was taken by a Pro-
ponent is actually a specific testing point (assume it is m)
on a ladder. Also, notice that all the information a Proponent
need to make a decision is (k, q, n,H), where H is a his-
tory of testing results, k, q stand for the number of jars and
the number of chances to perform the test, and n is the to-
tal number of rungs on the ladder under test. Therefore, the
policy we are looking for has the following form:

π(k, q, n,H) −→ m

After the Proponent taking each action, the result for
whether a jar is broken or not can be seen immediately base
on the highest safe rung chosen by the Opponent. Specifi-
cally, suppose the Opponent choose some x as the highest
safe rung, then the jar will break if and only if m > x. As-
suming the Opponent uses some meta-policy Π to find out x
(it is meta because it’s been used only in the abstract game
tree (Fig. 3)), then the meta-policy has the following form:

Π(k, q, n) −→ x

Now we define a new policy

π̂(k, q, n,m) =

{
break at m, if m > Π(k, q, n)

not break at m, if m ≤ Π(k, q, n)

This new policy gives an recursive definition of the history
H (assume t tests has been performed):

Ht+1 = π̂(kt, qt, n, π(kt, qt, n,Ht)) +Ht

Figure 3: An abstract HSR game where the parameter π is
complex since it is sampled from a policy space.

Since π(kt, qt, n,Ht) = mt, we have:

π(kt+1, qt+1, n,Ht+1) = π(kt, qt, n, π̂(k, q, n,mt) +Ht)

Which then implies:

mt+1 = π(kt, qt, n, π̂(kt, qt, n,mt) +Ht)

The inference above actually inspired a new way to carry
out the game without searching in a policy space explicitly.
Using π̂ and π, we refine and transform the abstract refuta-
tion game into a concrete game where Proponent and Op-
ponent move alternatively. In this new refutation game, the
Proponent will pick a testing point m based on current pol-
icy π, then the Opponent will reply “break” or “not break”
based on the current policy π̂. The state information changes
according to the following rule:

(kt+1, qt+1) =

{
(kt − 1, qt − 1), if break
(kt, qt − 1), if not break

We define a function F which takes in an history H and
output a boolean on whether the highest safe rung has been
located. it can be seen that F (H) = True if and only there
are two consecutive testing pointsm andm+1 in the history
such that a jar breaks atm+1 but not breaks atm. The game
ends (at round T) when one of the following cases happen
after an Opponent’s move:

1. kT × qT = 0 but F (Ht) = False, in this case, the
Proponent fails to locate the highest safe rung and lose the
game.

2. F (Ht) = True, in this case, the Opponent fails to hide
the highest safe rung so that Proponent can’t find it with
given resources, hence the Opponent lose the game.

In practice (Fig. 4), one can assume certain physic laws as
common sense knowledge to an agent and build those laws
into the game mechanism. In our implementation of HSR
game, since it is useless to test on a point m if one already

Figure 4: Refined design of the HSR refutation game,
which is the one used in our experiment.

knows that the jar will break at some m′ < m; similarly,
it is pointless to test on m if one already knows that the jar
will not break at some m′ > m. Therefore, the game state
can be efficiently represent as [k, q, n,m] without recording
the whole history. Specifically, we apply the following state
transition after an Opponent’s move:

[kt+1, qt+1, nt+1,] =

{
[kt − 1, qt − 1,m− 1,], break
[kt, qt − 1, nt −m,], not break

The game ends in the following cases:{
[0, qT , n > 0,] ∨ [kT , 0, n > 0,], Opponent wins
[kT , qT , 1,], Proponent wins

4 Experiment
4.1 neural-MCTS implementation
In this section, we will discuss our neural-MCTS implemen-
tation on the HSR game. Since the debate game has two
phases and the learning tasks are quite different between
these two phases, we applied two independent neural net-
works to learn the proposal game and refutation game re-
spectively. The neural-MCTS will access the first neural net-
work during the proposal game and then the second neural
network during the refutation game. There is also two inde-
pendent replay buffer which stores the self-play information
generated from each phase respectively.

Our neural network consists of four layers of 1-D convo-
lution neural network and two dense layers. The input is a
tuple (k, q, n,m, r) where k, q are resources, n is the num-
ber of rungs on the current ladder, m is the testing point
and r is an indicator of the current player. The output of the
neural network consists of two vectors of probability on the
action space for each player as well as a scalar as the game
result evaluation.

During each iteration of the learning process, there are
three phases: 1. 100 episodes of self-play will be executed

through a neural-MCTS using the current neural network.
Data generated during self-play will be stored and used
for the next phase. 2. the neural networks will be trained
with the data stored in the replay buffer. And 3. the newly
trained neural network and the previous old neural network
are putting into a competition to play with each other. Dur-
ing the competition phase, the new neural network will first
play as the OP for 20 rounds, then it will play as the P for
another 20 rounds. We collect the correctness data for both
of the neural networks during each iteration.

We shall mention that since it is highly time-consuming to
run a complete debate game on our machines, to save time
and as a proof of concept, we only run the complete game
for k = 3, q = 3 and n ∈ [1...10] for the time being. Nev-
ertheless, since the refutation game, once n is given, can be
treated independently from the proposal game, we run the
experiment on refutation games for larger parameters.

4.2 Correctness Measurement
Informally, an action is correct if it preserves a winning posi-
tion. It is straightforward to derive the correctness measure-
ment using the Bernoulli Triangle (section 2.2).

Proponent’s correctness Given (k, q, n), correct actions
exist only if n ≤ N(k, q). In this case, all testing points in
the range [n−N(k, q− 1), N(k− 1, q− 1)] are acceptable.
Otherwise, there is no correct action.

Opponent’s correctness Given (q, k, n,m), When n >
N(k, q), any action is regarded as correct; when n ≤
N(k, q), Opponent should take the action “not break” if
m < n − N(k, q − 1) and take action “break” if m >
N(k − 1, q − 1). Otherwise, there is no correct action.

4.3 Complete Game
In this experiment, we run a full debate game under the
given resources k = 3, q = 3. Since there are two neural
networks which learn the proposal game and the refutation
game respectively. We measure the correctness separately:
Fig. 5 shows the ratio of correctness for each player dur-
ing the proposal game. And Fig. 6 shows the ratio of cor-
rectness during the refutation game. The horizontal axis is
the number of iterations and it can be seen that the correct-
ness converges very soon after 10 iterations. It is because,
for k = 3, q = 3 the game is relatively simple so the neural-
MCTS can quickly find the optimal policy. Even though it
takes several hours to get this result, the experimental result
still serves as a proof-of-concept.

4.4 Refutation Game
In order to test our method on larger cases, we focus our
experiment only on refutation games with a given n. We
first run the experiment on an extreme case where k =
7, q = 7. Using the Bernoulli Triangle (Fig. 1), we know
that N(7, 7) = 27. We set n = N(k, q) so that the learning
process will converge when the Proponent has figured out
the optimal winning strategy which is binary search: namely,
the first testing point is 26 then 25, 24 and so on. Fig. 7 ver-
ified that the result is as expected. Then we run the same

Figure 5: Correctness ratio measured for the proposal game
on k = 3, q = 3. The legend “New OP” means that the
newly trained neural network plays as an Opponent; “Old P”
means that the previously trained neural network plays as an
Proponent. The same for the following graphs.

Figure 6: Correctness ratio measured for the refutation game
on k = 3, q = 3.

experiment on a resource-insufficient case where we keep
k, q unchanged and set n = N(k, q) + 1. In this case, the-
oretically, no solution exists. Fig. 8, again, verified our ex-
pectation and one can see that the Proponent can never find
any winning strategy no matter how many iterations it has
learned.

In later experiments, we have also tested our method in
two more general cases where k = 3, q = 7 for n = N(3, 7)
(Fig. 9) and n = N(3, 7) − 1 (Fig. 10). All experimental
results are conforming to the ground-truth as expected.

The HSRk,q game is also intrinsically asymmetric in
terms of training/learning because the Opponent always
takes the last step before the end of the game. This fact
makes the game harder to learn for the Proponent. Specif-
ically, considering all possible consequences (in the view of
the Proponent) of the last action, there are only three cases:
win-win, win-lose, and lose-lose. The Opponent will lose the
game if and only if the consequence is win-win. If the por-
tion of such type of consequence is very small, then the Op-
ponent could only focus on learning the last step while ignor-
ing other steps. However, the Proponent has to learn every
step to avoid possible paths which lead him to either win-

Figure 7: Refutation game on k = 7, q = 7, n = 128

Figure 8: Refutation game on k = 7, q = 7, n = 129

lose or lose-lose, which, theoretically, are more frequently
encountered in the end game.

5 Discussion
5.1 Asymmetry
One can observe some asymmetry emerged from the charts
we presented above (section 4), and notice that it is always
the case that during the beginning iterations the Opponent
is always dominating until the Proponent has gained enough
experience and learned enough knowledge. This asymmetry
is caused by two facts: 1. the action space of the Proponent
is quite different from the one of the Opponent. 2. the Op-
ponent always takes the last step before the end of the game.
These two facts make the game harder to learn for the Pro-
ponent but easier for the Opponent.

5.2 Limitations
The neural-MCTS algorithm is known to be time-
consuming. It usually takes a large amount of time to con-
verge. In order to make the algorithm run faster, we have to
use resources (more CPUs, distributed parallel computing)
to trade for time. That’s the reason why we don’t experi-
ence the amazing performance of AlphaZero for Chess and
Go on huge game trees. Another limitation is that, in order to
learn the correct action in a discrete action space, the neural-
MCTS algorithm has to explore all possible actions before

Figure 9: Refutation game on k = 3, q = 7, n = 64

Figure 10: Refutation game on k = 3, q = 7, n = 63

learning the correct action. This fact makes the action space
a limitation to MCTS like algorithms: the larger the action
space, the lower the efficiency of the algorithm.

6 Conclusion
Our original question was: Can the amazing game playing
capabilities of the Neural-MCTS algorithm used in Alp-
haZero for Chess and Go be applied to Zermelo games that
have practical significance? We provide a partial positive
answer to this question for a class of combinatorial opti-
mization problems which includes the HSR problem. We
show a generic pattern of how to translate such combinato-
rial optimization problems into Zermelo games: We formu-
late the optimization problem using predicate logic (where
the types of the variables are not ”too” complex) and then we
use the corresponding semantic game as the Zermelo game
which we give to the adapted Neural-MCTS algorithm. For
our proof-of-concept example, HSR, we notice that the
corresponding Zermelo game is asymmetric. Nevertheless,
the adapted Neural-MCTS algorithm converges on small in-
stances that can be handled by our hardware and finds the
winning strategy. Our evaluation counts all correct/incorrect
moves of the players, thanks to a formal HSR solution we
have in the form of the Bernoulli triangle which provides
the winning strategy. In the future, we hope to shed more
light on why the AlphaZero algorithm works so well.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time Analysis of The Multiarmed Bandit Problem. Machine
learning 47(2):235–256.
Auger, D.; Couetoux, A.; and Teytaud, O. 2013. Continu-
ous Upper Confidence Trees with Polynomial Exploration -
Consistency. In ECML/PKDD (1), volume 8188 of Lecture
Notes in Computer Science, 194–209. Springer.
Browne, C.; Powley, E. J.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Liebana, D. P.;
Samothrakis, S.; and Colton, S. 2012. A Survey of Monte
Carlo Tree Search Methods. IEEE Trans. Comput. Intellig.
and AI in Games 4(1):1–43.
Kleinberg, J., and Tardos, E. 2006. Algorithm Design.
Addison-Wesley.
Kocsis, L., and Szepesvri, C. 2006. Bandit Based
Monte-Carlo Planning. In Frnkranz, J.; Scheffer, T.; and
Spiliopoulou, M., eds., ECML, volume 4212 of Lecture
Notes in Computer Science, 282–293. Springer.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529–533.
Rosin, C. D. 2011. Multi-armed bandits with episode
context. Annals of Mathematics and Artificial Intelligence
61(3):203–230.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T. P.; Simonyan, K.; and Hassabis, D. 2017a.
Mastering Chess and Shogi by Self-Play with a General Re-
inforcement Learning Algorithm. CoRR abs/1712.01815.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; Chen, Y.; Lillicrap, T.; Hui, F.; Sifre, L.; van den Driess-
che, G.; Graepel, T.; and Hassabis, D. 2017b. Mastering the
game of Go without human knowledge. Nature 550:354.
Weber, T.; Racanire, S.; Reichert, D. P.; Buesing, L.; Guez,
A.; Rezende, D. J.; Badia, A. P.; Vinyals, O.; Heess, N.; Li,
Y.; Pascanu, R.; Battaglia, P.; Hassabis, D.; Silver, D.; and
Wierstra, D. 2017. Imagination-augmented agents for deep
reinforcement learning.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning 8:229–256.

