A Framework for Macro Discovery for Efficient State-Set Exploration

Francisco M. Garcia

Bruno C. da Silva

Philip Thomas

University of Massachusetts - Amherst Federal University Rio Grande do Sul University of Massachusetts - Amherst

fmgarcia@cs.umass.edu

Abstract

In this paper we consider the problem of how a reinforce-
ment learning agent tasked with solving a set of Markov de-
cision processes can use knowledge acquired early in its life-
time to improve its ability to learn how to solve novel, but re-
lated, tasks. Specifically, we propose a three step framework
in which an agent 1) generates a set of candidate open-loop
macros, 2) evaluates the value of each macro, and 3) selects
a diverse subset of macros. Our experiments show that ex-
tending the original action-set of the agent with the identified
macros leads to significant improvement in learning an opti-
mal policy in unseen MDPs.

Introduction

One of the key aspects of human learning is our ability
to construct building blocks upon which we can learn new
skills. An infant learning how to walk may struggle with co-
ordinating basic low-level motor movements at first. Later
on in their life, that person might decide to learn how to play
soccer. They are no longer concerned with how to walk or
even how to run, given that these are skills that they already
possess, and their focus would be on learning new soccer
skills. In other words, the person no longer learns new be-
haviors by experimenting with low-level behavior like they
used to do as an infant, and simply bootstrap the knowl-
edge acquired early on in their lives. This person, in other
words, is able to use these already-acquired higher level
skills to more efficiently explore the consequences of his ac-
tions when facing new tasks.

In the RL literature, these higher level actions are some-
times called options or macros. They introduce a bias in the
behavior of the agent, which is key during exploration to
speed up learning. Carefully constructed macros have been
shown to improve learning by allowing an agent to reach
distant areas of the state space quickly during training. How-
ever, if they are not appropriate for the problem at hand, they
may substantially degrade learning (McGovern and Sutton
1998). The question this paper focuses on is: “How can an
agent identify and leverage useful macros for a given class
or distribution of problems?”.

In this work we consider the scenario where an agent is
required to solve large number of different but related tasks,

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

bsilva@inf.ufrgs.br

pthomas @cs.umass.edu

which define a problem class. We make this definition more
precise in the following section.

We propose a framework that, after the agent has learn an
optimal policy for a few initial tasks, identifies macros that
would help in learning to solve the remaining tasks. In our
approach, after an agent learns optimal policies for a set of
tasks, trajectories from these policies are sampled to gener-
ate, evaluate, and select effective macros for the specific type
of problem.

In this paper we make the following contributions:

e Present a general framework for identifying macro actions
appropriate to the problem class.

e Introduce the notion of the value of a macro, called the
W-value.

e Introduce a new way of evaluating distances between
macros.

Related Work

A critical component that determines the performance of an
agent when learning to solve a new task is their ability to
efficiently explore the state space. Typically, exploration is
done through random walks, although it is known that his
strategy scales poorly as the size of the state space increases,
(Whitehead 1991).

A better approaches to exploring the state space, which
has become increasingly popular in the last years, is through
options or macros, (Sutton, Precup, and Singh 1999; ?),
which define temporally extended actions. Options are sub-
policies that the agent can invoke in any state s € Z and
can terminate in any state s € 7, where Z and 7 define
the initiation and termination set, respectively. Macros, on
the other hand, are their close-loop counterpart, and they are
defined as a finite length sequence of actions.! These tech-
niques allow the agent to “commit™ to some behavior for an
extended period of time, as opposed to randomly executing
actions, and developing methods for identifying useful skills
or macros became an active area of research commonly re-
ferred to as option discovery.

'Different work have slight different definitions for macros, in
this work we defined them as open look finite length sequence of
actions.

One approach for option discovery is to identify impor-
tant states in the transition graph and learn policies that
would take the area to that state. The work by McGov-
ern and Barto (2001) proposes splitting trajectories into
successful and unsuccessful trajectories based on whether
they were able to reach a pre-determined goal state. These
trajectories are then analyzed to identify bottleneck states,
and options can be obtained by learning policies that cause
the agent to reach those states. A more recent approach
based on the transition graph is the one presented by Marlos
C. Machado (2017). The authors propose using proto-value
functions (Mahadevan 2005) to identify states of interest and
extract options by learning an optimal policy that allows the
agent to reach each of those states.

Many other commonly used approaches to option discov-
ery do not rely on finding bottleneck states (Krishnamurthy
et al. 2016; ?; ?) however, they all share the same limitation
which limits how reusable they are: they all assume that the
transition graph will be maintained in future tasks. This is in
contrast with our proposed framework, which allows us to
extract generally useful open loop macros by making mini-
mal assumptions on the structure of the problem.

In this paper, we aim to develop a framework that is not
constrained by these limitations. We analyze sample trajec-
tories drawn from optimal policies to related tasks and use
them to obtain open-loop macro actions that improve learn-
ing when facing new tasks in the problem class

Background
Background on Markov Decision Processes

A Markov decision process (MDP) is a tuple, M =
(S, A, P,R,~,dy), where S is the set of possible states of
the environment, A is the set of possible actions that the
agent can take, P(s,a,s’) is the probability that the envi-
ronment will transition to state s’ € S if the agent takes
action ¢ € Ainstate s € S, R(s, a) is the real-valued re-
ward received after taking action a in state s, dj is the initial
state distribution, and v € [0, 1].

We use t € {0,1,2,...,T} to index the time-step, and
write S;, A;, and R; to denote the state, action, and reward
at time ¢. We assume that 7', the horizon, is finite, after which
the environment resets to an initial state drawn from dg. This
process defines an episode, and thus we restrict our discus-
sion to episodic MDPs. A policy, 7 : § x A — [0, 1], pro-
vides a conditional distribution over actions given each pos-
sible state: 7(s,a) = Pr(A; = a|S; = s).

In this paper, we define C, the problem class, to be the
set of all tasks or problems c that an agent may face, where
¢ = (S, A, P, R.,d§). In particular, note that we define C
such that all ¢ € C are MDPs sharing the same state-set S
and action-set .4, but may have different transition functions
P., reward functions R., and initial state distributions d.
For example, if C correspond to problems related to navigat-
ing a maze to reach a goal location, each task ¢ € C could
refer to navigating a specific maze (with, e.g., particular wall
configurations) or a same maze but with different goal loca-
tions.

A trajectory from a policy 7 is a sequence of state, ac-
tion, and rewards 7 = (S, 0,70 - - -, Sn, UnyTn), 1 < T,
and is obtained by following the policy for 1" time-steps or
until a terminal state is reached. We use 7, to refer only to
the sequences of actions in a trajectory, which we call the
action-trajectory.

The value of an action a in state s under a policy 7 in a
task c is referred to as the Q-value and is determined by the

Q function QT: Q7 (s,a) = E [ZtT Y R|S; = 5, A; = al.

A useful property of the Q function is the Bellman equation
which states that:

Q7 (s,a) = E [Ry +vQ(Sty1, At41)|St = s, Ay = a]

In other words, the Q value at S; and A; can be deter-
mined from knowing the expected Q value at Sy, Aiq1
and the expected value at R;.

Finally, we define a macro of length [to be a sequence
of actions m = (ag,---,a;). We denote by m; the ith
action in macro m, and define Q7 (s, m) to be the Q value
of state-macro pair (s,m). Given a set of macros, M, we
define an extended action set to be Ay = A U M. That
is, an extended action set is composed of both the primitive
actions in A and the macros in M. Our goal in this work
(formalized in Section) is to find the set of macros with
maximum expected performance on the problem class.

Background on Compression Algorithms

The goal of compression is to represent messages or data in
a compact manner by drastically reducing the number of bits
needed to express the same information. Many compression
algorithms share the same building blocks and their differ-
ences lie in how those elements are constructed and used.

Given an initial set of symbols X, called an alphabet,
compression techniques seek to identify the most frequently
used symbols in the alphabet and generate a codebook where
each symbol is assigned a unique binary representation—
a unique codeword. Once the codebook is built, new mes-
sages can be expressed in binary form by mapping each
symbol (or sequence of symbols) in the message to a code-
word in the codebook. For example, consider an alphabet
¥ = {a,i,h} and two different codebooks associating a
codeword with each symbol: codebook A = {0,1,01} and
codebook B = {01, 0, 1}. Furthermore, consider encoding
a message o« = “hi” under each different codebook. The bi-
nary representation of « under codebook A would be 011
(h = 01, i = 1); however, under codebook B, it would be
represented as 10 (b = 1, ¢ = 0). Compression techniques
seek to find a compact representation to express messages.

In this work we will consider the action-trajectories ob-
tained from a trajectory analogous to messages, and primi-
tive actions analogous to an initial alphabet. By taking this
perspective, compressing a set of sampled action-trajectories
will naturally result in generating a set of macros that occur
frequently in the trajectories from where they originated.

Problem Statement

We consider the setting where an agent is required to solve a
set of tasks ¢ € C. We assume that when solving a particular
task, an agent can interact with it for I episodes, and assume
that there is a distribution d¢ from which tasks are sampled
and presented to the agent. After the agent has trained on a
subset Cyrqin, C C, it is allowed to identify a set of macros
to be used for improving learning in any new task. We will
consider the new tasks to be part of a test set Ciesy C C,
where Ctrain N Ctest =.

We define the performance of a set of macros
M in a partticular task ¢ to be p(M,c) =
E Zf:o EtT:O V'R
at time step ¢ during the i*" episode. This quantity expresses
the expected average return an agent gets over [episodes on
a task c using an extended action set A r4. This implies that
the agent uses some learning algorithm to update its policy
and the performance of a set of macros is defined by how
much they improve learning for an agent during training.

Let C' be a random variable denoting a sample task from
dc. Our goal is to find one (of possible many) optimal set of
macros M* according to the following criterion:

M* € arg max E[p(M,C)])
M

Unfortunately, the domain of the objective in Eq.1 is dis-
crete, making the objective non-differentiable, and thus, dif-
ficult to optimize.

We argue that macros identified via compression tech-
niques are highly reusable and represent recurring behaviors
in the task distribution that will allow an agent to speed up
learning. In the next section, we propose using compression
as a method for generating a set of candidate macros, and ap-
proximating the set M* by incorporating the top performing
and diverse macros, M/, to the agent action-set.

AM,C}, where Ri is the reward

A Heuristic Approach for Approximating M*

The proposed framework can be summarized by the diagram
shown in Figure 1. Given a set of training tasks Ci.qir, C C,
the agent learns an optimal policy 7} for each ¢ € Cyyq4n and
samples n trajectories from each policy 7 in task c. Once
these samples have been obtained, our framework generates
a set of macros M’ as an approximation to M* by a 3 step
process: 1) macro generation, 2) macro evaluation, and 3)
macro selection.

Macro Generation - A Compression Perspective to
Identify Recurrent Action Sequences

There are many possible ways to generate macros from sam-
pled trajectories. One approach would be to simply look at
all possible sequences of actions that can be obtained from
these samples, however this would generate an extremely
large number of macros; combinatorial in the length of the
sampled trajectories, to be precise. As a practical strategy
to deal with this issue, we propose using compression tech-
niques to generate candidate macros.

Consider the problem of finding a compressed repre-
sentation for a action-trajectory ¢, = (a,b,c,d) where

{a,b,¢,d} € A. From the perspective of compression, We
can consider t, akin to a message we wish to compress
and {a, b, ¢, d} to the symbols in the initial alphabet. Com-
pressing t,, thus, would result in building larger repeating
sequences of symbols that are incorporated to the alpha-
bet. That implies that initially the alphabet is composed of
only primitive actions and after compression, it also contains
macros.

Following this intuition, the sampled action-trajectories
are compressed and the symbols in the final codebook de-
fine a set of candidate macros, M, to be evaluated. In this
work, we selected LZW (Welch 1984) as a compression al-
gorithms because of its simplicty and efficiency in populat-
ing the codebook.

Macro Evaluation - The Value of a Macro

At this stage we have generated set of candidate macros M,
but do not have a sense of how useful they are in general in
relation to each other. Knowing this could help us determine
which macros are preferable for the problem class. One way
of evaluating them, would be to re-train the agent with each
macro individually and assessing the improvement in learn-
ing over a set of tasks. However, this would quickly become
very expensive for large action spaces where there could be
thousands of macros.

We propose a score for evaluating a macro in a problem
class, that can be efficiently computed offline in closed-form
based on the Q-values of primitives. We propose determin-
ing the value of a macro m over a problem class C by the
W-function defined as:

We(m) = E [Q&(S,m)] 2

where the expectation is defined over both tasks C' and
states .S.

In other words, we defined the value of a macro m to be
the expected Q-value of m over all states in the problem
class.

Assuming the process previously described generates a
large number of candidate macros, learning the true value
of equation 2 for each candidate becomes computationally
expensive, particularly if the size of S is large. However,
this formulation allows us to compute the W-values for all
macros in closed-form, provided we have access to the true
Q-values for all a € A and 7 is greedy with respect to Q. It
can be shown that the Q-value of a macro m at state s for a
task c under policy 7 is given by:

Mt is worth noting that not all compression algorithms build
their alphabet incrementally, but many popular ones (such as LZW)
do.

/ Macro
- Generation

Macro Macro /
- Evaluation - Selection -M

Trajectories

Figure 1: Diagram depicting proposed framework.

Qﬂsm:Z[Z Z(=D my)

k=1 -sM)es sttm)eS

klz

r(a, s®)Qm (s,)>
a’€eA

l i— i
% Hi:l PC(S(1)7m(i)as())
P(sD, mp), S(k))

+VZ

a’€A

d,s)Qz (s, a"))
3)

Notice that this expression is given in terms of the Q-
values of primitives, and consequently, the W-values can be
calculated in close form 3.

This is a reasonable assumption when we consider that
algorithms like Q-learning, (Watkins and Dayan 1992), and
DQN, (Mnih et al. 2015), approximate the true Q-value and
behave greedily with respect to Q. If the agent uses these
techniques to learn an optimal policy for the tasks in Cy.q;, it
will have a reasonable approximation to Q readily available.

In the case of stochastic policies, introducing a new ele-
ment in the original action-set of the agent, affects the sum-
mation in the last term over all actions, so the actual value
of a macro can no longer be calculated in closed form. How-
ever, it can still be calculated efficiently by applying the Bell-
man equation using the Q-values of primitives as a starting
point.

Macro Selection - Encouraging Macro Diversity

Having defined a value for a macro allow us to estimate
which macros we generally believe will lead to higher re-
wards. However, there is a trade-off we must account for
when extending the agent’s action set. If too few macros
are included to the action set, the agent might miss on the
ability to better explore the state space, on the other hand,
including too many will result in the agent having too large
of an action-set, which will hinder learning. This trade-off
has also been observed in the context of options by Marlos
C. Machado (2017).

3The proof for this derivation will be available at http://
www—all.cs.umass.edu.

We tackle this problem by establishing a distance metric
between macros and only including those that are dissimilar
enough to the rest of the action-set.

Let [,,, denote the length of macro m, Sy a random vari-
able denoting a state where m is executed and .S; the state
where m finishes execution. Furthermore, let S/, = S; — S
denote a random variable describing the change in state
caused by the execution of m and p,,, the corresponding dis-
tribution for S),. We refer to p,,, as the end-state distribu-
tion.

In this paper, we define the distance between two macros
m1 and m2 to be the KL divergence between p,,,1 and p,,2,

that is:
= raa(s) tog (2221

s€S pm1(8)

DKL (pml | |pm2) =

In the case of continuous state spaces, we discretize the
distribution into appropriately sized bins.

Figure 2 shows the empirical distribution for the change
of state calculated for four macros in the maze navigation
problem class (introduced in the next section). The macros
m1, Me, M3, my are defined by repeating the same primitive
action 5 times. The possible primitive actions are given by
r,l, u, d and they allow the agent to move in the environment
right, left, up or down, respectively. The figure intends to
show that very macros reflect their similarity (or differences)
in the effect that they have in the distribution of state tran-
sitions. We can measure the similarity between two macros
by measuring the distance between their distributions.

The set M’ is then incrementally built by only including
those macros that have a minimum distance § to all other
macros that have already been included in the set. By select-
ing macros in descending order according to their W-value,
their W-value value defines a preference criterion by which
macros can be selected.

Experimental Results

In this section we present experimental results providing em-
pirical evidence that the identified macros lead to improved
learning. We first analyze two simple problem classes: chain
and maze navigation, whose transition models can be de-
fined apriori and the true Q-values for any policy can be ac-
curately estimated in tabular form. These problems allow us
to study the properties of our method in detail and visualize
how the identified macros affect the behavior of the agent
during learning.

0200
0175
0175

0150
0150

0100

0075 0075

End-state Probability
End-state Probability

0050

0025 0025

00001 0000
o 20 2 o 20 5

10 15 10 15
End-state Buckets End-state Buckets

(a) End-state distribution for

macro m; macro ms

(b) End-state distribution for

End-state Probability

o H 2 2 o 5 20 s

0 s 1 15
End-state Buckets End-state Buckets

(c) End-state distribution for
macro ms

(d) End-state distribution for
macro Mg

Figure 2: End-state distribution for macros m1, mso, ms and my4 in the maze navigation problem class (described in experiments
section). The primitive action-set is composed of for actions r,l, u, d, and macros defined as follows: m; = (r,r,r,r,7),
mo = (I,1,1,1,1), mg = (u,u,u,u,u), my = (d,d,d,d,d), where primitive actions r,, u, d move the agent one state right,

left, up or down, respectively.

We then further extend our experiments to more complex
problem classes by relaxing the assumption of access to the
true Q-values of primitive actions, using function approx-
imation to estimate Q and learning a model from data to
estimate the transition function.

In the first two experiments, the agent was trained using
Q-learning with tabular representation and in the remain-
ing experiments the policy was trained using DQN Mnih et
al. (2015). Exploration was implemented with an e-greedy
strategy with an initial value of 0.9 and decreasing by a fac-
tor of 0.99 after each episode. All figures depict mean per-
formance and standard error over a set of testing tasks.

Chain Problem Class

In this problem class, the agent originally has at its disposal
two primitive actions, A = {a1, az}. The states and tran-
sitions between states in each task form a chain, meaning
that each state has two possible transitions, move to the state
to the right or move to the state to the left. Given a state
sk at position k in the chain, action a; moves the agent to
state spy1 but with a small probability the agent moves to
state sx_1. Similarly, after taking action as, the agent moves
to state s;_1 but with a small probability it moves to state
sk+1- The agent receives a large reward at either end of the
chain, so if there are a total of n states in the chain, the agent
receives a large reward Ry or R, upon reaching states sg
or sy, respectively. We ensure by construction that from the
initial state in the chain the number of states at one end is
much larger than the number of states at the other end of
the chain, and that the reward obtained at the farther end is
much larger than the reward obtained at the nearest end. In
our implementation, when constructing a new task, an inte-
ger a between 0 and 100 is sampled uniformly to define the
length of the chain to the right of the agent’s initial position.
The left side of the chain is assigned a length of 100 —a. The
end state at the end of the longest side of the chain results in
a reward of +1000 and the one at the shortest end results in
a reward of 4-10. In this experiment we set 6 = 2.0 to filter
macros.

Two different different tasks within the chain problem
class are shown in Figure 3. The agent’s initial position is
shown as a gray square within the chain, the state which re-

— e

(a) Chain task example 1 (b) Chain task example 2
Figure 3: Example tasks for chain problem class. The agent
starts in the location shown as a gray square within the chain.
If it reaches the state at the farther end (shown in red) it
receives a reward of +100, if it reaches the state at the closer
end (shown in blue) it receives a reward of +10.

sults in the largest reward is shown in red at the farther end
of the chain (relative to the initial position), and the state re-
sulting in the smallest reward is shown in blue at the closer
end of the chain.

This problem class demonstrates that oftentimes the pol-
icy of the agent converges to the nearest end if exploration is
done randomly, since it is unlikely that random exploration
will reach the further end of the chain. However, if the agent
were to have macros well suited for this type of problem,
it would be to reach both ends of the chain and learn the
correct optimal policy for any particular task.

Figure 4 depicts the mean reward accumulated by the
agent during training over 20 different randomly generated
chain tasks, after using 4 tasks for training to generate can-
didate macros The results show that, on average, the policy
of an agent equipped only with primitive actions (shown in
blue) converges to a sub-optimal behavior, since it never dis-
covers the farthest end with the largest reward. As the action-
set of the agent is augmented with the identified macros, the
agent no longer only executes actions randomly, but rather
they are guided by the macros identified for this type of
problems.

Note that this does not mean that the agent is not able to
represent an optimal policy using only primitive actions, in
fact any policy that can be represented with macros can be
represented with primitives. What these result show is that
macros provide guidance to the agent which allow it to better
explore the state space.

Chain Problem Class

=== primitives
2001 ——=- primitives+macros
wol
pmemm T T
i'l’,‘
300 /
o
=]
Q i
2 ¢
= 200 A 'f
!
/
g
1007 /’ ’f‘----..-—-.—_,-..,,
/
~ -
R I e
0 500 1000 1500 2000 2500 3000

Episode

Figure 4: Comparison of mean learning curve over 20 ran-
domly generated chains.

Maze Navigation Problem Class

The previous class of problem allowed us to asses the ability
of the agent to reach an optimal policy with the identified
macros, when having access to only primitive actions would
fail. In this set of experiments, we extend our results to class
of problem with a much larger state space and an action-set
composed of four primitive actions.

At the beginning of an episode, the agent is randomly
place in an initial state, in a randomly generate maze, and the
objective is to reach a specific goal state. The agent receives
areward of -1 after executing an action and receives a reward
of +100 upon reaching the goal state. The state is represented
by the xy-position in the environment and the agent can exe-
cute four possible actions: move right, move left, move up or
move down. We test robustness to stochastic environment by
introducing noise to each executed action: after selecting an
action, with probability 0.8 the agent executes the selected
action and with probability 0.2 the agent executes any action
at random. If the agent executes an action that would move
it to a state that is blocked (an obstacle), the agent remains
in the same state. The agent trained on 6 different tasks to
generate candidate macros, and tested on 20 different tasks.
In this experiment we set § = 2.0 and contrast our method
with eigen-options Marlos C. Machado (2017).

The benefits of the identified macros can be seen empiri-
cally in Figure 5. The figures shows as a gray line the path
taken by the agent (shown in red) selecting action from a
uniform distribution during a period of 1000 steps in one
sample environment. We consider this a period of pure ex-
ploration.

The figure on the left shows that when the agent explores
using only primitive actions, it densely visits a small region
of the state space but is unlikely to reach states that are far
away. The figure on the right, on the other hand, shows that
with the identified macros the agent is able to explore a much
larger area of the state space. This latter approach allows
the agent to learn at a global scale during early stages of

.

Figure 5: Trajectories obtained from pure exploration after
1000 steps using action-sets A (left) and A (right).

Maze Problem Class

04 £ -

—1000 4 oy cro

—l, -
’1' ! Plonen
—2000{ A o
] .‘1__.4’

—3000 4

Return
N

-4000{ =4

h === primitives
——- primitives+macros
—=-- eigen options

—5000 1

0 250 500 750 1000 1250 1500 1750
Episode

Figure 6: Mean performance on 20 testing tasks on maze
navigation problem class. Macros evaluated using true Q
function and transition function.

training.

Figure ?? shows the mean performance of the agent in the
20 testing tasks from this problem class, which is in accor-
dance with the intuition on exploration described above.Just
as it was the case in the previous experiment, extending the
action-set with the identified macros led to a large perfor-
mance improvement over using only primitives. In this sce-
nario, our framework performs similarly to eigen options,
however it does not incur in the expensive process of solv-
ing several MDPs for each eigen vector.

Scaling up Results to Large State Spaces

In the previous experiments, we were able to precisely cal-
culate the W-values of each macros since the transition
probabilities and true Q-values for primitives were known.
This section demonstrates empirically, that these results hold
when we use function approximation to estimate Q and ap-
proximate the transition model from data.

For all these experiments, the agent collected (s, a,s’)
transitions during training, and they were used to fit a model
to estimate the transition probabilities P(s,a,s’). The re-
iults of Equation 1 for each method are reported in Table 1

“For all problems, we attempted to contrast our results with

Problem Class

Primitives

Primitives+Macro

Eigen-Options

Maze Navigation (approximate)

—2355.44 £+ 640.54

—2016.50 £643.71

—3444.06 £ 459.68

Animat

—909.77 £199.53

—'752.89 + 188.59

Lunar Lander

—442.31 £ 23.38

—354.85 £ 23.02

Table 1: Average performance on test tasks with large state spaces.

Maze Problem Class (Stochastic)

=== primitives
——- primitives+macros
——- eigen options

—1000 4

—1500 4

NPTl L P T
e

e

e
—2000 4 e pomeremet

—2500 4

Return

—3000 ~
W\wﬂn"v

—3500 1

—4000 4

0 250 500 750 1000 1250 1500 1750
Episode

Figure 7: Mean performance on 20 testing tasks on maze
navigation. Macros evaluated using approximate Q function
and transition function.

Maze Navigation Problem Class: We revisited the maze
navigation problem class, this time estimating the true Q-
values for primitives for the training tasks using DQN. Since
in this problem the state-space is discrete, the transition
function can be easilly modeled by collecting samples of
(s,a,s’) tuples and estimating P(s’|s,a) by looking at the
frequency count.

Figure 7 shows the mean learning curve over 20 randomly
sampled environments contrasting the reward accumulated
by agent using only primitives (blue) and agent equipped
with the identified macros (red). In this case, we also high-
light one of the drawbacks of eigen options which is its de-
pendency on the transition graph. Just as we do with our ap-
proach, we optioned eigen options from a set of tasks with
a different transition graph from the set of test tasks. As ex-
pected, the options actually hinder learning since they do not
correspond to the test environment. Our method, on the other
hand, obtains generally useful macros which are agnostic to
the transition graph.

Animat Problem Class: This type of problem was first
introduced by Thomas and Barto (2011) and presents the
challenge of having a much larger action space than the pre-
vious problems. In this problem class, the agent is a cir-

eigen options, however in cases of large transition graphs, where
tabular form is not an option, we could not find a clear indication
of how to identify the correct eigen options in the original paper.
For that reason, there is no comparison in the case of animat and
lunar lander.

cular creature that lives in a continuous state space. It has
8 independent actuators, angled around it in increments of
45 degrees. Each actuator can be either on or off at each
time step, so the action set is {0, 1}%, for a total of 256 ac-
tions. When an actuator is on, it produces a small force in
the direction that it is pointing. The agent is tasked with
moving to a goal location; it receives a reward of —1 at
each time-step and a reward of +100 at the goal state. The
different variations of the tasks correspond to randomized
start and goal positions in different environments. The agent
moves according to the following mechanics: let (¢, y;) de-
fine the state of the agent at time ¢ and d be the total dis-
placement given by actuator 3 with angle . The displace-
ment of the agent for a set of active actuators, B, is given
by, (Az, Ay) = D scp(dcos(0p), dsin(0p)). After taking
an action, the new state is perturbed by 0-mean unit vari-
ance Gaussian noise. Notice that certain actuator combina-
tions will not help the agent reach a goal; for example, if
only actuators at angles 0 and 180 are activated, that action
would leave the agent in the sample position where it pre-
viously was (ignoring noise effects). The variations in task
correspond to different environments with distinct transition
graphs.

Lunar Lander Problem Class: The implementation for
this problem class was obtained from OpenAI Gym (Brock-
man et al. 2016). The agent is tasked with landing a rocket
in a specific platform and it has 4 actions at its disposal.
Thrust left, right, up or do nothing. Variations of the prob-
lem class were obtained by changing the landing location
and the thrust force.

Discussion and Future Work

In the paper, we presented a general framework for identi-
fying reusable macros. By analyzing the trajectories of well
performing policies, we can identify recurrent behavior that
is associated with high reward and allows the agent to bet-
ter explore the state space. We presented a new approach to
determine the value of an action or a macro and introduce
a novel way for determining the similarity between macros.
As future work, we intend to study how to extend our ap-
proach to continuous action spaces.

Acknowledgement

This work was partially supported by FAPERGS under grant
no. 17/2551-000

References
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;

Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
cite arxiv:1606.01540.

Krishnamurthy, R.; Lakshminarayanan, A. S.; Kumar, P.;
and Ravindran, B. 2016. Hierarchical reinforcement learn-
ing using spatio-temporal abstractions and deep neural net-
works. CoRR.

Mahadevan, S. 2005. Proto-value functions: Developmen-
tal reinforcement learning. In Proceedings of the 22nd In-
ternational Conference on Machine Learning (ICML-2005),
553-560. ACM.

Marlos C. Machado, Marc G. Bellemare, M. B. 2017. A
Laplacian Framework for Option Discovery in Reinforce-
ment Learning. CoRR.

McGovern, A., and Barto, A. G. 2001. Automatic discovery
of subgoals in reinforcement learning using diverse density.
In Proceedings of the Eighteenth International Conference
on Machine Learning, ICML 01, 361-368. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

McGovern, A., and Sutton, R. 1998. Macro actions in re-
inforcement learning: An empirical analysis. Technical re-
port, University of Massachusetts - Amherst, Massachusetts,
USA.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529-533.

Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Between
mdps and semi-mdps: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence 112(1-
2):181-211.

Thomas, P. S., and Barto, A. G. 2011. Conjugate markov
decision processes. In Proceedings of the 28th International

Conference on International Conference on Machine Learn-
ing, ICML’11, 137-144. USA: Omnipress.

Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning. In
Machine Learning, 279-292.

Welch, T. A. 1984. A technique for high-performance data
compression. Computer 17(6):8-19.

Whitehead, S. D. 1991. Complexity and cooperation in g-
learning. In Proceedings of the Eighth International Work-
shop (ML91), Northwestern University, Evanston, Illinois,
USA, 363-367.

