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Abstract

Most reinforcement learning algorithms do not provide guar-
antees in settings with multiple agents or partial observability.
A notable exception is Counterfactual Regret Minimization
(CFR), which provides both strong convergence guarantees
and empirical results in settings like poker. We seek to under-
stand how these guarantees could be achieved more broadly.
To take a first step in this direction, we introduce a simple
algorithm, local no-regret learning (LONR), which captures
the spirit of CFR, but can be applied in settings without a ter-
minal state. We prove its convergence for the basic case of
MDPs and discuss research directions to extend our results to
address richer settings with multiple agents, partial observ-
ability, and sampling.

Introduction
Reinforcement learning (RL) has seen significant successes
in domains such as Atari games (Mnih et al. 2015) and
robotics (Montgomery et al. 2017). A key feature shared
by these domains is that they are single-agent and there is
(close to) full observability of the environment. This has al-
lowed these strong empirical results to be driven by (approx-
imations of) algorithms with strong theoretical convergence
guarantees. In contrast, in domains such as Go (Silver et al.
2016) and Doom (Jin, Levine, and Keutzer 2017) which lack
at least one of these properties there has been empirical suc-
cess but more limited theoretical justification for the algo-
rithms.

An exception is poker, which has both multiple strategic
agents and partial observability due to an inability to see op-
ponents’ cards (also known as incomplete information). De-
spite this, multiple algorithms have found success in play-
ing at human expert level (Brown and Sandholm 2017;
Moravčı́k et al. 2017) and non-trivial versions have been
fully solved (Bowling et al. 2015). The algorithm underpin-
ning these impressive results, Counterfactual Regret Min-
imization (CFR) (Zinkevich et al. 2008), is an algorithm
developed for solving games of incomplete information. It
works by using regret matching (a particular no-regret learn-
ing algorithm) to select actions. In particular, one copy of
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such an algorithm is used at each information set, which
corresponds to the full history of play observed by a sin-
gle agent. The resulting algorithm satisfies a global no-regret
guarantee, so at least in two-player games is guaranteed to
converge to an optimal strategy through sufficient self-play.
Thus, this approach addresses both multiple agents and par-
tial observability while having both theoretical guarantees
and strong empirical results.

However, CFR does have limitations. It makes several
strong assumptions which are natural for games of incom-
plete information such as poker, but limit applicability to
further settings. For example, it assumes that the agent has
perfect recall, which in a more general context means that
the state representation captures the full history of states vis-
ited (and so imposes a tree structure). It also assumes that a
terminal state is eventually reached and performs updates
only after this occurs, which is not a requirement for tra-
ditional algorithms like Q-learning. Finally, it makes other
specific assumptions, such as the use of a particular no-
regret algorithm. Nevertheless, approaches inspired by CFR
have shown empirical promise in domains that do not nec-
essarily satisfy these requirements (Jin, Levine, and Keutzer
2017).

In this paper, we take a step toward putting this type of ap-
proach to general RL problems on a firmer theoretical foun-
dation. We develop a new algorithm, which we call local
no-regret learning (LONR), which in the same spirit as CFR
uses a copy of an arbitrary no-regret algorithm in each state
(for technical reasons we require a slightly stronger property
we term no-absolute-regret). Our main result is that LONR
has the same convergence guarantee as Q-learning for a
Markov Decision Process (MDP). While our result does not
immediately extend to multiple agents, partial observability,
or sampling, we believe our result provides a starting point
for progress on them and conclude with a discussion.

The closest technical approach to ours that we are aware
of is the approach used by (Bellemare et al. 2016) to intro-
duce new variants of the Q-learning operator. However, our
algorithm is not an operator as the policy used to select ac-
tions changes from round to round in a history-dependent
way, so we instead directly analyze the sequences of Q-
values our algorithm generates. Additionally, unlike prior
RL results but like prior no-regret learning results our proofs
of convergence are for the limit of the average of the Q-



values rather than the Q-values themselves.

Related work
Beyond the work already discussed, the most closely re-
lated literature to our work is the literature on multi-agent
learning. A common approach is to use no-regret learning
as an outer loop to optimize over the space of policies,
with the assumption that the inner loop of evaluating a pol-
icy is given to the algorithm. There is a large literature on
this approach in normal form games (Greenwald and Jafari
2003), where policy evaluation is trivial, and a smaller one
on “online MDPs” (Even-Dar, Kakade, and Mansour 2009;
Mannor and Shimkin 2003; Yu, Mannor, and Shimkin 2009;
Ma, Zhang, and Sugiyama 2015), where it is less so. Of par-
ticular note in this literature, (Even-Dar, Kakade, and Man-
sour 2005) also use the idea of having a copy of a no-regret
algorithm for each state. An alternate approach to solving
multi-agent MDPs is to use Q-learning as an outer loop
with some other algorithm as an inner loop to determine
the collective action chosen in the next state (Hu and Well-
man 2003; Greenwald, Hall, and Serrano 2003). (Gondek,
Greenwald, and Hall 2004) proposed the use of no-regret al-
gorithms for this purpose. In contrast to these literatures, we
combine RL in each step of the learning process rather than
having one as an inner loop and the other as an outer loop.

Prior work has drawn other connections between no-
regret learning and RL to reduce the sample complexity of
Monte-Carlo Tree Search (Kaufmann and Koolen 2017), re-
duce imitation learning to no-regret learning (Ross, Gor-
don, and Bagnell 2011), and reduce RL to contextual ban-
dits (Daumé III, Langford, and Sharaf 2018). There is
also work on a RL algorithm which achieves good regret
bounds (Jaksch, Ortner, and Auer 2010) and lower bounds
on regret for RL algorithms (Osband and Van Roy 2016).

Preliminaries
Consider a Markov Decision Process M = (S,A, P, r, γ),
where S is the state space, A is the (finite) action space, P :
S × A → ∆(S is the transition probability kernel, r : S ×
A → R is the (expected) reward function (which we assume
to be bounded), and γ is the discount rate. In operator form,
Q-learning is an operator T whose domain is bounded real-
valued functions over S ×A and is defined as

T Q(s, a) = r(s, a) + γEP [max
a′∈A

Q(s′, a′)] (1)

This operator is a contraction map in || · ||∞, and so con-
verges to a unique fixed point Q∗, where Q∗(s, a) gives
the expected value of the MDP starting from state s, tak-
ing action a, and thereafter following the optimal policy
π∗(s) = arg maxa∈AQ

∗(s, a) (Bertsekas and Tsitsiklis
1996).

Our algorithm makes use of a no-regret learning algo-
rithm. Consider the following (adversarial full-information)
setting. There are n actions a1, . . . an. At each timestep k an
online algorithm chooses a probability distribution πk over
the n actions. Then an adversary chooses a reward xk,i for
each action i from some closed interval, e.g. [0, 1], which

the algorithm then observes. The (external) regret of the al-
gorithm at time k is

1

k + 1
max
i

k∑
t=0

xt,i − πt · xt (2)

An algorithm is no-regret if there a sequence of constants ρk
such that regardless of the adversary the regret at time k is
at most ρk and limk→∞ ρk = 0. For example, a common
bound is that ρk is O(1/

√
k).

For our results, we make use of a stronger property, that
the absolute value of the regret is bounded by ρk. We call
such an algorithm a no-absolute-regret algorithm. Algo-
rithms exist that satisfy the even stronger property that the
regret is at most ρk and at least 0. Such non-negative-regret
algorithms include all linear cost Regularized Follow the
Leader algorithms, which includes Randomized Weighted
Majority and linear cost Online Gradient Descent (Gofer and
Mansour 2016).

Local no-regret learning
The idea of this work is to try and fuse the essence
of Q-learning and CFR. A standard analysis of Q-
learning proceeds by analyzing the sequence of matrices
Q, T Q, T 2Q, T 3Q, . . .. The essence of CFR is to choose
the policy for each state locally using a no-regret algorithm.
While doing so does not yield an operator, as the policy
changes each round in a history-dependent way, this process
still yields a sequence of Q matrices as follows.

Fix a matrix Q0. Initialize |S| copies of a no-absolute-
regret algorithm with n = |A| and find the initial policy
π0(s) for each state s. Then iteratively reveal the rewards to
copy s of the algorithm as xsk,i = Qk(s, ai), and update the
policy πk+1 according to the no-absolute-regret algorithm
and Qk+1(s, a) = r(s, a) + γEP,πk

[Qk(s′, a′)].
Call this process local no-regret learning (LONR). It can

be viewed as a version of Expected SARSA (Van Seijen et
al. 2009) where instead of using an ε-greedy policy with de-
caying ε, a no-absolute-regret policy is used instead. In the
rest of this section we work up to our main result, that LONR
converges to Q∗. Like many prior results using no-regret
learning (e.g. (Zinkevich et al. 2008)), the convergence is
of the average of the Qk matrices.

We work up to this result through a series of lemmas. To
begin, we derive a bound on the on average ofQ values using
the no-absolute-regret property. We need to use two slightly
different averages to be able to relate them using the T op-
erator.

Lemma 1. Let Qk = 1/k
∑k
t=1Qt and Q

k
=

1/k
∑k−1
t=0 Qt. Then

−γρk−1 + T Q
k
(s, a) ≤ Qk(s, a) ≤ γρk−1 + T Q

k
(s, a).

(3)

Proof. By the definitions of LONR and no-regret algo-



rithms,

Qk(s, a) =
1

k

k∑
t=1

Qt(s, a)

=
1

k

k−1∑
t=0

r(s, a) + γEP,πt [Qt(s
′, a′)]

= r(s, a) + γEP [
1

k

k−1∑
t=0

Eπt [Qt(s
′, a′)]]

≥ r(s, a) + γEP [max
i

1

k

k−1∑
t=0

Qt(s
′, ai)− ρk−1]

= −γρk−1 + r(s, a) + γEP [max
i

1

k

k−1∑
t=0

Qt(s
′, ai)]

= −γρk−1 + r(s, a) + γEP [max
i
Q
k
(s′, ai)]

= −γρk−1 + T Q
k
(s, a)

The key step is the inequality in the fourth line, where
we use the fact that the policy for state s′ is being deter-
mined by a no-regret algorithm, so we can use Equation (2)
to bound the expected value of that policy terms of the
value of the hindsight-optimal action and the regret bound of
the algorithm. Similarly, by the stronger no-absolute-regret
property, we can reverse the inequality to get Qk(s, a) ≤
γρk−1 + T Q

k
(s, a) This proves Equation (3).

Next, we show that the range that the Q values take on
is bounded. This lemma is similar in spirit to Lemma 2
of (Bellemare et al. 2016).

Lemma 2. Let ||r||∞ = maxs,a |r(s, a)|. Then ||Qk −
Q0||∞ ≤ 1/(1− γ)||r||∞ + 2||Q0||∞

Proof. By definition, Qk(s, a) = r(s, a) +
γEP,πk

[Qk−1(s′, a′)]. Thus by the subadditive prop-
erty of norms, ||Qk||∞ ≤ ||r||∞ + γ||Qk−1||∞. By
induction, ||Qk||∞ ≤ (

∑k−1
t=0 γ

k)||r||∞ + γk||Q0||∞.
Thus ||Qk − Q0||∞ ≤ ||Qk||∞ + ||Q0||∞ ≤
1/(1− γ)||r||∞ + 2||Q0||∞.

Combining these two lemmas, we can show that Q
k

is an
approximate fixed-point of T , and that the approximation is
converging to 0 as k →∞.

Lemma 3. ||Q
k
− T Q

k
||∞ ≤ 1

k (1/(1 − γ)||r||∞ +

2||Q0||∞) + γρk−1

Proof. Applying the bounds from Lemmas 1 and 2, we get

that

||Q
k
− T Q

k
||∞ ≤ ||Qk −Qk||∞ + ||Qk − T Qk||∞

= ||Q
k
−Qk||∞ + max

s,a
|Qk(s, a)− T Q

k
(s, a)|

≤ ||Q
k
−Qk||∞ + γρk−1

=
1

k
||Qk −Q0||∞ + γρk−1

≤ 1

k
(1/(1− γ)||r||∞ + 2||Q0||∞) + γρk−1

It remains to show that such a converging sequence of
approximate fixed points converges to Q∗, the fixed point of
T .
Lemma 4. Let Q0, Q1, . . . be a sequence such that
limk→∞ ||Qk − T Qk||∞ = 0. Then limk→∞Qk = Q∗.

Proof.

||Qk −Q∗||∞ ≤ ||Qk − T Qk||∞ + ||T Qk −Q∗||∞
= ||Qk − T Qk||∞ + ||T Qk − T Q∗||∞
≤ ||Qk − T Qk||∞ + γ||Qk −Q∗||∞

=
1

1− γ
||Qk − T Qk||∞

Thus, by assumption, lim supk→∞ ||Qk−Q∗||∞ ≤ 0. Since
||Qk − Q∗||∞ ≥ 0, lim infk→∞ ||Qk − Q∗||∞ ≥ 0. Thus
limk→∞ ||Qk −Q∗||∞ = 0 and the result follows.

Combining Lemmas 3 and 4 shows the convergence of
LONR learning.
Theorem 1. limk→∞Q

k
= Q∗.

Discussion
We have proposed a new learning algorithm for MDPs, local
no-regret learning (LONR), and shown that it has the same
convergence guarantees as Q-learning when complete up-
dates are performed on all states simultaneously. However,
Q-learning also converges when updates are done via sam-
pling, and this is important in practice for problems of more
than moderate size. Also, for standard MDPs, Q-learning al-
ready suffices and LONR provides no obvious advantage.
Intuitively it could help with multiple agents and partial ob-
servability, but our existing analysis does not address these
extensions. In the remainder of the paper, we discuss each of
these issues and directions towards addressing them.

Like LONR, CFR was originally developed to update
all states simultaneously. However, with some clever tech-
niques to reduce the computational and space overhead of
this approach, it has shown success in solving games of
moderate size (Bowling et al. 2015). However, a line of
work has also shown that CFR will also converge when sam-
pling trajectories (Lanctot et al. 2009; Gibson et al. 2012;
Johanson et al. 2012), and it is plausible that this approach



could be applied to LONR as well to provide a sampling ver-
sion. Another approach, which has a strong intuitive appeal,
is to observe that LONR uses an arbitrary no-absolute regret
learning algorithm for the full information case, where the
algorithm can observe the reward for each action. No-regret
algorithms are also studied for the “bandit” case, where only
the reward for the chosen action is observed. This matches
the information structure of sampling, with the additional
complication that we also only get samples of the reward
and next state rather than its expectation and the full distri-
bution respectively. Thus, a natural conjecture is that simply
using a bandit algorithm as our no-absolute-regret learning
algorithm would lead to convergence with sampling. As this
would require a substantially different analysis to our cur-
rent approach, we leave this as an open problem.

In addition to sampling, current algorithms such as
DQN (Mnih et al. 2015) rely on approximation. While there
has been some exploration of function approximation in the
context of CFR (Waugh et al. 2015; Moravčı́k et al. 2017;
Jin, Levine, and Keutzer 2017), more work is needed, and
the right way to combine with a more general framework
like LONR, remains an open question.

Multiple agents and partial observability introduce sim-
ilar issues in that P and r are no longer stationary and in
general we have a Pk and Rk for each round k. This causes
problems with the proof of Lemma 1. In particular, note that
in the third step of the proof we interchange the sum over
rounds and P and r to be able to apply the no-regret prop-
erty in the fourth line. Without the ability to do this, we end
up needing to apply the no-regret property to a weighted
sum, and in general the weighting may differ from state to
state, which makes generalizing the proof non-trivial. How-
ever, there is both theoretical and empirical cause for hope.
On the theoretical side, CFR provides an example of such a
guarantee, although there the special structure that the state
contains the full history of play (and thus the states form a
tree structure) is exploited. On the empirical side, we have
the successes of both CFR (Brown and Sandholm 2017;
Moravčı́k et al. 2017) and ARM (Jin, Levine, and Keutzer
2017), in particular despite the lack of any theoretical guar-
antees for the latter. It is possible that this approach requires
at least some restriction on the domain, and in the appendix
we explore a special case (which captures among other
things normal form games) where a variant of Lemma 1 can
be proved. Proving more general versions remains an open
problem.

A more narrow technical issue is that our argument relied
on a slightly stronger version of the usual no-regret property,
which we termed no-absolute-regret. Is this necessary or an
artifact of our proof technique? Relatedly, while several al-
gorithms are known which satisfy this stronger property, we
are not sure whether regret matching (the algorithm used by
CFR) does or not.
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Beyond MDPs

If we move beyond MDPs, P and r are no longer stationary
and in general we have a Pk and Rk. This causes problems
with the proof of Lemma 1. Recall the initial part of that

proof, updated to this more general setting:

Qk(s, a) =
1

k

k∑
t=1

Qt(s, a)

=
1

k

k−1∑
t=0

rt(s, a) + γEPt,πt
[Qt(s

′, a′)]

In the original proof, we pulled the expectation over P out-
side the sum, but now we cannot. In particular, writing the
expecation more explicitly gives

1

k

k−1∑
t=0

rt(s, a) + γ
∑
s′∈S

Pt(s
′ | s, a)Eπt [Qt(s

′, a′)] (4)

We can still reverse the order of the sums, but the weighting
terms now depend on t so they cannot be moved outside.
More problematically, they also depend on s and a, so it is
not immediately clear how to generalize our results.

For intuition about the sort of problems that could arise,
consider a state s′ where there are two actions. At odd k,
rk(s′, a1) = 1 and rk(s′, a2) = 0 and vice versa at even k.
It is a valid no-regret strategy to randomize uniformly over
the actions, but if the Pk are such that you only arrive in s′
from s at odd k, then this gives an incorrect estimate.

In the remainder of this section, we analyze a special case
where we can prove a variant of Lemma 1.

Time-invariant P

If P does not change with k, but r does, we can still prove a
version of Lemma 1. With a single state, this captures learn-
ing in normal-form games, where no-regret learning is in-
deed known to work. This assumption is also common in
the literature on “online MDPs” (Even-Dar, Kakade, and
Mansour 2009; Mannor and Shimkin 2003; Yu, Mannor, and
Shimkin 2009; Ma, Zhang, and Sugiyama 2015) In this set-
ting, a version of Lemma 1 can be proved, but now rather
than having a constant operator T it now changes over time
as

TkQ(s, a) = rk(s, a) + γEP [max
i
Q(s′, ai)]. (5)

Lemma 5.

−γρk−1 + TkQk(s, a) ≤ Qk(s, a) ≤ γρk−1 + TkQk(s, a).
(6)



Proof.

Qk(s, a) =
1

k

k∑
t=1

Qt(s, a)

=
1

k

k−1∑
t=0

rt(s, a) + γEP,πt [Qt(s
′, a′)]

=
1

k

k−1∑
t=0

rt(s, a) + γEP [
1

k

k−1∑
t=0

Eπt [Qt(s
′, a′)]]

≥ 1

k

k−1∑
t=0

rt(s, a) + γEP [max
i

1

k

k−1∑
t=0

Qt(s
′, ai)− ρk−1]

= −γρk−1 +
1

k

k−1∑
t=0

rt(s, a) + γEP [max
i

1

k

k−1∑
t=0

Qt(s
′, ai)]

= −γρk−1 + rk(s, a) + γEP [max
i
Q
k
(s′, ai)]

= −γρk−1 + TkQk(s, a)

As before, the key step is applying the no-regret property to
obtain the inequality and we apply the same argument with
the no-absolute-regret property to obtain the reverse inequal-
ity.


