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Abstract

Credit assignment is one of the most critical problems in re-
inforcement learning to discover which actions are respon-
sible for rewards. It becomes more serious as reinforcement
learning is applied to real-world scenarios where the deci-
sion process may involve thousands of actions. In this paper,
we propose a novel framework that utilizes a computation
process to assign credits for hundreds of thousands of non-
terminal state-action pairs, in order to accelerate the learning
speed. Specifically, we first abstract the states and actions of
the original problem into a compact representation, which re-
duces the problem to a tractable size. Then, we solve the ab-
stracted problem to obtain the optimal value function, which
is the expected returns of future rewards. Finally, we use the
derived value function to assign credits for state-action pairs
of the original problem. We conduct extensive experiments on
Doom, a complex 3D video game in which the reward signal
is sparse. The experiment results demonstrate that our agent
outperforms previous state-of-the-art agents in terms of both
kill count and death number with a large margin. The effec-
tiveness also manifests in an online competition of Doom, in
which we achieved the 2nd place in the final.

1 Introduction
Credit assignment is one of the most fundamental challenges
in reinforcement learning, which refers to how to assign the
credit for the outcome of the multitude of decisions. In gen-
eral, it is nontrivial since the ultimate success (or failure) is
associated with a vast number of internal decisions in the
course of play. Most iterative reinforcement learning algo-
rithms simply backpropagate the influence of the final re-
ward along the planning horizon step by step. Since the in-
fluence of a reward gets more and more diluted over time,
they only work well if the horizon is short. However, most
of the time, the length of the planning horizon is up to hun-
dreds or even thousands, e.g., playing chess or robot naviga-
tion. Therefore, credit assignment becomes the vital point of
reinforcement learning in real-world scenarios.

Recently, deep reinforcement learning (DRL) (Sutton and
Barto, 2017) has achieved significant successes in various
applications, including Atari (Mnih et al., 2013) and the
game of Go (Silver et al., 2017). However, the issue of credit
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assignment becomes more serious for DRL in these complex
tasks. For example, Montezuma’s Revenge (MR) is an Atari
game, in which the agent needs to collect keys to open the
door. However, it is generally not feasible to implement an
effective credit assignment since one should assign credits
to all the images including keys. In this case, DRL usually
fails on the task of Montezuma’s Revenge even it can sur-
pass human performance on some other Atari games.

Reward shaping (Ng, Harada, and Russell, 1999) solves
the credit assignment problem by redesigning the reward
function based on expert knowledge. By incorporating the
expert knowledge, reward shaping is able to improve the
agent performance without additional computation power.
The main difficulty of reward shaping is that the expert
knowledge is presented as concepts and principles, while
the reward function is presented in numerical values. For
the complex and dynamic environment, it is difficult if not
impossible to transfer the expert knowledge into numerical
forms correctly, even with large and continuous human ef-
forts. OpenAI FIVE (OpenAI, 2018b) adopts massive com-
putation resources and reward shaping to play DOTA2, a
multi-player online game. It was trained with both huge
amounts of computation power (180 game years per day)
and considerable human efforts on reward shaping (an ex-
pert designed reward system which assigns credits to differ-
ent actions and varies as the performance increases). How-
ever, the agent is still being easily defeated by professional
players (OpenAI, 2018a).

To address the aforementioned issues, we introduce
a computation based credit assignment framework. Our
framework compresses the original problem into an ab-
stracted form, and then solves it to obtain the value func-
tion as the guidance for credit assignment of the original
problem. Instead of directly assigning credits in the origi-
nal state-action space, our framework only requires to as-
sign credits to several selected state-action pairs in the ab-
stracted state-action space, and then propagates the credits
to the whole space. Our method is able to assignment cred-
its for hundreds of thousands of state-action pairs in an
automated manner. It has boosted the performance of the
vanilla DRL algorithm by providing a more rich, accurate,
and fine-grained credit assignment than the handcrafted re-
ward shaping.

Specifically, our framework consists of three stages: ab-



straction, planning and feedback. In the abstraction stage,
we adopt first-order-logic (FOL), a widely used formal sys-
tem, to abstract each state in DRL (original state) into a set
of first-order-logic propositions (relational state). Note that
multiple original states can be mapped to a same relational
state, thus the number of relational states is much smaller
than the number of original states. In the planning stage, we
run the value iteration algorithm to obtain the optimal value
function for each relational state in a feasible time without
any approximation. In the feedback stage, the optimal value
function for relation state is not the optimal value function
for the original state, because multiple original states can
be mapped to the same relation state. Therefore, we adopt
the optimal value function as the potential function (Ng,
Harada, and Russell, 1999), which is used in reward shap-
ing to boost the performance of DRL algorithm running on
original states.

We conduct experiments on a First-Person-Shooter (FPS)
game Doom (Kempka et al., 2016), which is widely used
as the test-bed for DRL algorithms. The original reward
(killing the enemy) in Doom is pretty sparse and delayed, as
the agent needs to explore in a complex map to find the en-
emy, then battle with the enemy till win. This procedure may
involve more than hundreds of actions. Thus, handcrafted
credit assignment on Doom has a performance upper bound
due to the complexity of the game.

The evaluation involves three different settings, ablation
study, known opponents comparison and real world com-
petition, to obtain a comprehensive analysis of our frame-
work. Firstly, for ablation study, we divide the derived credit
assignment into several categories, each of which is used
to train an individual agent. Then we analyze the effect of
different credit assignment by testing the performance of
those agents. Secondly, we compare our agent with previ-
ous state-of-the-art agents (Dosovitskiy and Koltun, 2016;
Wu and Tian, 2017). Benefiting from the automated credit
assignment, the experiment results show that our agent out-
performs the others on both kill count and death number.
Finally, we have attended a competition of Doom, in which
we fought against unknown opponents on unknown maps to
obtain a real-world test of our framework. We achieved the
2nd place in the final, and killed the same number compared
with the champion but with 2 more suicides.

2 Related Work
Deep reinforcement learning and relational reinforcement
learning are the most related works to our framework. We
review their recent progress in this section.

2.1 Deep Reinforcement Learning
Recent achievements of reinforcement learning (RL) are
partially due to the combination of deep neural net-
works (Mnih et al., 2015), with breakthroughs in both novel
architectures (Mnih et al., 2016) and applications (Silver et
al., 2016). One profound example is applying deep RL to
games (Silver et al., 2016; Mnih et al., 2013), which serve as
effective test beds to explore the techniques. In this scenario,
an agent interacts with its environment to learn a policy, i.e.,

to decide the appropriate actions in order to reach a desir-
able state. Representative works on more challenging tasks
of 3D games (Kempka et al., 2016) include Deep Recur-
rent Q-learning (Lample and Chaplot, 2017) and successor
representations (Kulkarni et al., 2016). Besides, curriculum
learning is demonstrated to be effective for training an agent
step by step (Wu and Tian, 2017). Although deep RL meth-
ods have shown remarkable results, there still exist numer-
ous challenges that are not well addressed, among which the
exploration-exploitation dilemma is a critical one. The aver-
age branching factor of decision spaces hovers around 30 for
Chess and 300 for Go, but even a video game such as Doom
or StarCraft has an order of magnitudes larger branching fac-
tor. It is imperative to develop techniques that can guide the
explorations effectively.

2.2 Relational Reinforcement Learning
Incorporating the power of logic with learning methods has
been studied for decades. Relational reinforcement learn-
ing (Džeroski, De Raedt, and Driessens, 2001) presents
a learning technique that combines reinforcement learning
with relational learning. Due to the use of a more expres-
sive representation language to represent states, actions and
Q-functions, it is effective for tasks with structural internal
representations. With the rise of deep learning, recent ap-
proaches combing relational representations with deep neu-
ral networks. Deep relational reinforcement learning (Zam-
baldi et al., 2018) uses self-attention to iteratively reason
about the relations between entities and guide a model-free
policy. In the following section, we adopt techniques from
the relational reinforcement learning to build the compact
representation of the original problem and solve it.

3 Method
In this section, we first give an overview of our framework,
and then present the details of incorporating the first-order-
logic within a computation process to address the credit as-
signment problem in deep reinforcement learning step by
step.

3.1 Overview
The Markov decision process (MDP) provides a mathemati-
cal framework for modeling decision making, and we use it
to describe our framework formally. An MDP is a 5-tuple,
M =< S,A, T,R, λ >, where each element in the tuple
indicates for state, action, transition matrix, reward func-
tion and the discount factor, correspondingly. Without los-
ing generality, we take the Deep Q Network (DQN) (Mnih
et al., 2013) as a representative of DRL algorithms, which
utilizes a convolution neural network to learn the Q func-
tion by sampling from the environment. In the language of
MDPs, the update equation of DQN is :

Q(s, a)← Q(s, a)+α[R(s, a, s′)+λmax
a′

Q(s′, a′)−Q(s, a)],

(1)
where Q(s, a) is the Q value of each state-action pair,
R(s, a, s′) is the reward function and α is the learning rate.
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Figure 1: The working procedure of our mechanism. Gen-
erate the credits for state-action pairs of the deep rein-
forcement learning in three stages, abstraction, planning and
potential-based reward shaping.

Without credit assignment, in many real-world scenarios, the
reward R(s, a, s′) only appears at the end of a trajectory,
e.g., playing chess or finding out the exit of a maze. In that
case, the learning signal needs to propagate through all state-
action pairs one by one to update their Q value, which can
slow down the converging speed of DRL dramatically.

We introduce a Relational Markov Decision Process
(RMDP) to generate additional rewards since the design of
reward function is the key point of credit assignment. The
RMDP, Mr =< Sr, Ar, Tr, Rr, λr >, is a special type of
MDP, where each state is a set of FOL propositions. The
main advantage of RMDP is that it is easy to incorporate
expert knowledge to design the reward function while sup-
porting all those MDP solving algorithms.

We can therefore incorporate RMDP to assign credits in
an MDP as

R(s, a, s') = R(s, a, s') + λVr(fs(s'))− Vr(fs(s)), (2)

where Vr is the optimal value function for state in RMDP,
and f is an abstraction function that maps states S in MDP
to relational states Sr. We solve the RMDP to obtain the op-
timal value function of each state, and use it to assign credits
for the DRL.

Fig. 1 illustrates the working flow of our framework,
which consists of three steps, abstraction, planning and feed-
back through reward shaping. First, the abstraction stage
converts the raw inputs into entries and predicates as the
state of the RMDP. Then, the planning stage solves the
RMDP to generate the optimal value function. Finally, we
use it to reshape the original reward to accelerate the train-
ing process of the agent. The details will be introduced in
the following sections as in the same order.

3.2 Abstraction
The abstraction stage maps multiple states in the MDP into
a single state in an RMDP. Generally, states in MDP are raw
images or numerical vectors, e.g., the screen of Atari game
or the game board of Go, while in RMDP states are repre-
sented by first-order-logic propositions. Thus, the input of
abstraction stage is original states and actions of MDP and
the output is first-order-logic propositions. This can be for-
mally put as :

Sr = fs(S), Ar = fa(A), (3)

where the functions fs and fa map the state S and action A
in MDP to state Sr and action Ar in RMDP, respectively. S
and A are raw states and actions of the original task, while
the corresponding Sr and Ar are expressed in the form of
FOL propositions.

The state of RMDP only reserves important features such
that the states can be significantly compressed. For instance,
we can keep the foreground information in the state vector of
S in the vision-related tasks while omitting the background
information. Specifically, all states in the MDP which can
be represented by the same set of FOL propositions will be
mapped to the same state in RMDP. Thus, different states
with the same object but different backgrounds in MDP will
be mapped to the same state in RMDP, which facilities the
credit assignment by greatly reducing the state dimensions.

The implementation of abstraction stage depends on the
input form of the original task and which type of information
is decided to be retained. Various kinds of techniques can
be used for abstraction. For simple grid games, a rule-based
transformation is enough, while for vision-related tasks, we
may use object detection, image segmentation, and localiza-
tion. For instance, assume the input image is an apple on a
box. At first, we adopt an object detection neural network to
generate two bounding boxes for the apple and box, sepa-
rately. Then, we use a transformation program to figure out
that the apple is on the box by their position information,
Finally, the transformation program outputs the proposition
on < apple, box > as the state of RMDP. As the state is
presented in FOL propositions, the actions of the RMDP are
predefined predicates, e.g., move(x, y), each action in MDP
is mapped to such a predicate.

The abstraction procedure not only reduces the problem
scale, but also incorporates semantic information. All enti-
ties and predicates used in the RMDP are predefined in a
background knowledge base. As an additional benefit, the
information makes the result of our framework more ex-
plainable than those end-to-end systems.

3.3 Planning
The reinforcement learning problem is equivalent to a plan-
ning problem, if every parameter of the MDP is known. Note
that the transition matrix T and reward function R of DRL
are generally unknown. That is the reason why we need to
run Q-learning instead of value iteration to solve the origi-
nal task. In RMDP, we present the transition matrix Tr as
a set of logic deduction rules and parameters determined
by the playing trajectories. Given the input state and action,
logic deduction rules generate several alternative next states,
and the probability parameter of each next state is calculated
from the statistics of the trajectories played by the DRL al-
gorithm. The reward function of the RMDP is a subset of
the reward function of the MDP, all non-zero reward state-
action pairs of the MDP are remained in the RMDP. To be
specific, for any MDP states si and sj and a RMDP state sr
that satisfy sr = fs(si) = fs(sj) and sj = T (si, a), we
ensure that R(si, a) = 0 by the design of fs. Finally, the



discount factor λr and reward function Rr remain the same
with MDP.

We adopt the value iteration algorithm to solve the RMDP
and obtain the optimal value function of each state. Since the
optimal value function is calculated by back propagation,
it can be used as an oracle for exploration. Value iteration
extends a k-steps-to-go horizon of the value function V k

r to
a (k + 1)-steps-to-go value function V k+1

r using the bellman
operator B∗.

V k+1
r (sr) =(B∗V k

r )(sr) (4)

=Rr(sr, ar, sr ') + λr
∑

sr '∈Sr

Tr(sr, ar, sr ')V k
r (sr ').

The details of the value iteration algorithm can be de-
scribed in several steps. It first looks at the state sr ' that is
reachable by some actions, for which the value V k

r (s') is
already known. Then, for all Tr(sr, ar, sr ') > 0, it calcu-
lates the summation of their value and multiplication with
the discount factor, λr

∑
sr '∈Sr

Tr(sr, ar, sr ')V k
r (sr '). Fi-

nally, because only the highest state value is desired, the
final value V k+1

r (sr) maximizes over the set of applicable
actions. After the algorithm is executed, we obtain the opti-
mal value function of RMDP. Despite it cannot be accepted
as the value function of MDP. it can serve as the potential
function in reward shaping to guide the exploration in MDP.

3.4 Feedback
The planning result Vr is utilized to assign credit in DRL
through a two-step mechanism—feedback and reward shap-
ing.

At the feedback step, each state s in MDP is assigned a
potential function φ(s), which can be conducted by substi-
tuting Eq. (3) into Eq. (4) as:

φ(s) = Vr(fs(s))

= Vr(sr). (5)

At the reward shaping step, we introduce R' to represent
the reward function used in DRL after reward shaping. It is
defined as:

R'(s, a, s') = R(s, a, s') + F (s, a, s'). (6)

The potential function φ is not the optimal value function
for the state s, so it cannot be used to derive the optimal
policy directly. However, as (Ng, Harada, and Russell, 1999)
proposed, φ(s) can transform the long-term decision making
problem into a short-term decision making problem, which
can accelerate the learning process. Thus, the function F is
calculated by the potential function φ as

F (s, a, s') = γφ(s')− φ(s). (7)

Substituting Eq. (5) and Eq. (7) into Eq. (6), we get the
final reward function of M ' as

R(s, a, s') = R(s, a, s') + λVr(fs(s'))− Vr(fs(s)). (8)

As we can see, for a given state-action pair in DRL, if the
original reward function R(s, a, s') is zero, Eq. (8) will as-
sign credit for it to guide the learning process.

The rationality of our algorithm lies on the fact that the
potential-based reward shaping can ensure that the optimal
value function under a modified reward function is also opti-
mal for the original (Ng, Harada, and Russell, 1999), which
can theoretically accelerate the converge speed of RL algo-
rithms largely (Arjona-Medina et al., 2018).

4 Application
In this section, we deploy our framework on a complex
3D video game (Doom) to demonstrate that the perfor-
mance of deep reinforcement learning can be significantly
improved by boosting credit assignment with RMDP. We
choose Doom as the test scenario since it exhibits a multi-
tude of challenges compared with 2D games (e.g., Go and
Atari), especially because the original reward (killing the
enemy) of Doom is pretty sparse. It makes the credit as-
signment and handcrafted reward shaping on Doom pretty
hard. Although the policy improvement theorem (Sutton and
Barto, 1998) ensures that the algorithm will converge to the
optimal solution without reward shaping, however, in real
scenarios, it is impractical under limited computation and
storage budgets.

We implement our framework based on ViZ-
Doom (Kempka et al., 2016), which is a research platform
that builds on top of the Doom game. On ViZDoom,
researchers are able to access the screen buffer and game
variables as inputs, and perform actions as outputs.

4.1 Architecture
The instantiated framework of our method for Doom is
shown in Fig. 2, which incorporates the potential function
derived RMDP into the A3C algorithm (Mnih et al., 2016).
Note that, our framework is agnostic to the DRL algorithm,
thus we adopt A3C instead of DQN due to that it achieves
the best performance on Doom. The bottom part demon-
strates the general working procedure of deep reinforcement
learning. The A3C algorithm takes the screen buffer, game
variables from the environment as inputs, and outputs corre-
sponding actions. Due to the complexity, traditional methods
can only pick up several state-action pairs to assign cred-
its (Wu and Tian, 2017), while our method is able to as-
sign non-zero credit for all the incoming state-action pairs
if the potential function value of the current state and next
state is not the same. The upper part represents the imple-
mentation of abstraction and logic planning procedure of the
RMDP. The abstraction procedure of Doom consists of two
components, object detection, and localization, generating
2D and 3D information correspondingly. Object detection
generates bounding boxes, each one of them indicates for
an entity. Localization generates the location information,
which figures out the spatial relationship between the enti-
ties. The extracted entities and related information are fed to
the predefined predicates to obtain the corresponding state
in RMDP. Details of the predefined predicates are discussed
in Sec. 4.3. Recall that, since every parameter of the RMDP
is known, it is solved by planning algorithm offline, and the
result is saved in the potential function. The original reward
of the A3C model is combined with the approximate value
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Figure 2: In our framework, deep reinforcement learning and
relational reinforcement learning are working in a parallel
way. On each action of the agent, the received state is passed
both to the abstraction and actor-critic module. The abstrac-
tion module transfers the raw state into entities and feeds
them to predefined predicates to obtain the relational state,
which is substituted to the potential function to obtain the
approximate value of the state. Finally, the value of the re-
lation state is combined with the original reward by reward
shaping and feedback to the agent.

which is obtained by substituting the relation state in poten-
tial function. Finally, the reshaped reward is fed to the agent
as training signals.

4.2 Abstraction
Abstraction aims to map the state expressed in the raw pixel
into to FOL predicates that the RMDP can access. It is
pretty trivial for board games such as “Go” since the state
can be represented as a 2D array with length 361. However,
the state space would be orders of magnitude larger for 3D
games, which makes it difficult to conduct effective plan-
ning. To address this issue, we propose to recognize the most
relevant components that may facilitate the subsequent logic
reasoning procedure in the environments.

We adopt object detection to extract entities and localiza-
tion to obtain their relationships. The object detection neu-
ral network (Ren et al., 2015) generates the bounding box as
outputs. Each bounding box indicates for an entity, includ-
ing enemies, weapons, health kits, armors and other useful
items. We apply ORB-SLAM (Mur-Artal, Montiel, and Tar-
dos, 2015) on ViZDoom to build the map and localize the
agent itself, which is able to specify the relationship be-
tween objects by providing the coordinates. Based on the
result of object detection and localization, we are able to
transform the raw pixel input into predicates like “hurt” or

“move” shown in Tab. 1. Specifically, the doom game pro-
vides game variables to represent the current state of the
agent, e.g. health, armors, and weapons. Each time, we feed
the most recent 4 frames with corresponding game variables
to the abstraction module, so it can detect the health decrease
by comparing the game variable. Similarly, “move” is de-
tected by tracking the position of the agent, or comparing
the changes of the enemy bounding boxes between adjacent
frames.

4.3 Definition of the Relational MDP
In a death-match, all participants in Doom are hostile to each
other. The goal is to kill the enemies as many times as pos-
sible within a given time. The final rankings are determined
by frags, which is defined as

frags = num(Kill)− num(Suicide), (9)

where num(Kill) and num(Suicide) denote the number of
the enemies killed by the agent and the number of the agent
suicides, respectively.

All activities happened in the death-match can be de-
scribed as relationship between entries, e.g. moving and pick
up resources. In this case, we define three types of entities
in Doom, i.e., the agent which is controlled by us, the op-
ponents which are controlled by other participants, and re-
source items that can be picked up. Their relationship is ex-
pressed as state predicates, which describe the status of an
agent, e.g., dead or alive. Action predicates represent the ab-
stracted actions that the agent can take, e.g., move, shoot,
etc. We summarize all predicates of Doom in Table 1. From
an analogy perspective, predicates listed in 1 define the
“topological” relationship between objects, which ignores
the specific values of parameters like distance or direction
to capture the most fundamental attributes of the game.

Table 1: Entities and predicates in Doom.

Entities agent the agent controlled by us
opponent other agents

items pickable resources
State hurt(x) x has a health decrease

Predicate see(x,y) x is able to see y
aimed(x,y) x is targeted by y

move(x) x is moving
stay(x) x is standing still
alive(x) x is alive
dead(x) x is dead

Action approach(x, y) x walk to y
Predicate keepmove(x) x keep moving

scan(x) x checks around
aim(x,y) x aim at y by turning
shoot(x) x fires the weapon

For example, an image with two health kits and one en-
emy that shown in Fig 2 can be expressed as {see <
agent, healthkit0 >, see < agent, healthkit1 >, aim <
agent, enemy0 >, alive < agent >, alive < enemy0 >}.
Note that, in order to limit the number of all valid states, the
exact position and direction of the agent are not expressed in



the states. For the same reason, the information of weapon,
armor, and ammo that the agent currently holds are also
omitted, and the number of enemies is limited to 3 at the
most. According to our test, it is easy for the agent to learn
the behavior of picking up resource items.

5 Evaluation
We evaluate our framework by conducting various experi-
ments on the Doom game. For each experiment, we evaluate
the performance in terms of two metrics: (1) frags, which
is equal to the number of killings minus the number of sui-
cides; (2) death, which counts the number of times being
killed by other agents. By integrating the derived potential-
based reward function to the A3C algorithm, we obtain sub-
stantial improvements in terms of both metrics.

We first analyze the agent performance in an ablation
study, then we compare our agent with two state-of-the-art
agents, F1 (Wu and Tian, 2017) and IntelAct (Dosovitskiy
and Koltun, 2016), and finally report the result of attending
a competition of Doom. In all of our experiments, we sim-
ply put all trajectories into a fixed sized replay memory and
manage it in an first-in-first-out style. The training batches
are sampled from the replay memory, and the batch size is
set as 128, the discount factor is γ = 0.99, and the learning
rate is α = 10−4. Note that the length of each trajectory is
determined by the death time of the agent, which makes it
not a fixed number.

5.1 Ablation Study
As we mentioned in the previous sections, since the goal of
Doom is to kill as many enemies as possible, the original
reward function only assigns credits for the last shoot, oth-
erwise, it is always zero. In this section, we provide an ab-
lation study by summarizing the derived credit assignment
into two categories by their meaning, namely attack and de-
fense. Each of them is expressed as a setting of the reward
function. Recalling the function F (s, a, s′) used in Eq. 6,
we obtain the attack reward function by only reserving the
value ofF when the action is shooting, otherwise setting it to
zero. Similarly, the defense reward function can be obtained
by reserve value of F when the action is moving. Then, we
adopt those reward function setting to train and test the agent
individually to measure the effects of different credit assign-
ments.
Attack If there exists any enemy currently in view, the

agent should aim at it and fire immediately. If there exist
more than one enemies, the agent should pick the nearest
one.

Defense If the agent is targeted by an enemy, it should move
to get rid of it. Doom does not provide defense instru-
ments or terrains, e.g., shield or fortifications. Thus, the
only method of defense is to increase the difficulty of en-
emy attacks, and the continuous movement of the agent
will decrease the accuracy of the enemy shot.
Note that all the aforementioned credit assignment cat-

egories are apparent for a human user if one understands
the goal and regulations of the game. However, it is non-
trivial for an RL agent to learn the strategies based on the

trial-and-error interactions with a dynamic environment. It
would take an agent numerous trials to grasp such strategies
via deep reinforcement learning, while the concept is more
accessible via relational reinforcement learning. Since the
credit assignment is derived from the abstracted RMDP, the
risk of introducing undesirable bias to the learning process
is reduced to a minimum.

Table 2: Frags and death number of three versions of our
agent, which are trained with different credit assignment.

FlatMap Map01 Map02
frags death frags death frags death

A3C 288 9 14 41 16 41
Attack 859 22 291 122 256 90
Defense 845 26 186 101 95 87
All 916 23 333 117 224 84

By applying those credit assignment settings indepen-
dently on A3C, we obtain four different versions of the
agent, “Original A3C”, “Attack enhanced”, “Defense en-
hanced” and the complete version of our agent with “All
enhancements”. As shown in Table 2, the A3C version with-
out any enhancement obtains both the least frags and least
deaths, because its number of battles is much less than the
other versions. Applying the attack enhancement on A3C
improves the attack efficiency. On all maps, the number of
frags of attack enhancement is larger than the defense en-
hancement version, especially on Map01 and Map02, as they
provide more powerful weapons. On Map01, the effect of
defense enhancement is most obvious. The reason is that the
flying process of the rocket fired by the rocket launcher gives
more dodge opportunities compared with other weapons.
Applying all enhancements together enables the agent to live
longer and attack more efficiently in a fight. It demonstrates
that the all enhancement version achieves higher frags with
fewer or equal deaths, which implies that its winning rate is
higher than the other two single enhancement versions.

Table 3: Frags and death number of F1, InteAct and ours

FlatMap Map01 Map02
frags death frags death frags death

F1 451 9 282 110 35 56
IntelAct 864 15 -86 164 134 105
Ours 916 23 333 117 224 84

5.2 Comparing with Known Opponents
We also compare the performance of our agent with two
state-of-the-art methods. One is F1 (Wu and Tian, 2017)
which is the champion of the known-map-track of ViZDoom
competition 2016, and InteAct (Dosovitskiy and Koltun,
2016) who won the champion of the unknown-map-track
of ViZDoom competition 2016. We chose FlatMap, Map01
and Map02 as test maps according to the following rea-
son. FlatMap eliminates the random factor caused by ter-
rain, Map01 is the competition map of Track1 with rocket



Table 4: Results on a Doom AI Competition.
Agent 1 2 3 4 5 6 7 8 9 10 Total

1st 15 20 25 24 18 32 42 42 32 25 275
ours 24 31 31 35 34 21 28 28 21 20 273
3rd 15 17 17 18 22 26 21 25 18 14 193
4th 4 3 25 21 11 8 25 20 26 21 164
5th 10 9 3 13 17 16 7 6 27 31 139

launcher as the only available weapon, and Map02 is one of
the competition maps of Track2 with all weapons available.
For each agent, we evaluate 30 rounds of death-match with 2
minutes per round. All agents are tested by combating with
15 build-in Doom bots on three maps.

Results are reported in Table 3. F1 performs well on
Map01, while for the other two maps, it demonstrates an ob-
vious performance degeneration. We speculate that F1 was
trained overfitting to Map01 to maximize their performance
on Track1. In contrast, the ability to predict future values of
game variables helps IntelAct to handle all kinds of weapons
and ammo, yielding better performance on FlatMap and
Map02 than F1. The weakness of IntelAct is that the map
terrain affects its performance dramatically. Since Map01 is
much narrow than Map02, at most of the time, IntelAct tends
to stuck on some corner of the map or just stood somewhere
and look around, which makes it is easy to be killed by other
agents. Furthermore, due to the blast effect of the rocket, In-
telAct has experienced a lot of suicides, which makes the
frags negative.

The performance of those reward shaping methods is
quite dependent on their training experience. In contrast, the
potential function in our framework is derived from the Re-
lational MDP, which are not dependent on any scenario fea-
tures, e.g., special weapon or terrain. It facilitates our agent
to demonstrate more general capabilities in various environ-
ments. The results show that our agent outperforms F1 and
IntelAct by a large margin on all maps. On the death number,
F1 is the least in all agents. Our agent chooses to involve in
more combats to get higher frags, this strategy also increases
the death number a little.

5.3 Real World Competition
We report the results of participating in an online Doom
competition fighting with unknown opponents on unknown
maps, to obtain a real-world test of our method. The compe-
tition consists of 10 Ten-Minute rounds. The final rank is de-
termined by the total frags number. At the beginning of each
round, all agents were born in different places on the same
map with unknown terrains. Once the agent was killed in the
game, there will be a reborn delay of 10 seconds as a punish-
ment. It thus encourages an agent to shoot as many enemies
as possible while staying alive to maintain more valid game
time.

Table 4 shows the frags result of the top 5 contestants of
the competition. Our agent won the first place in 5 rounds
among all the 10 rounds. We achieved the 2nd place in final,
slightly behind the first place but gained 23.5% higher score
than the third place. This further demonstrates that our agent
is endowed with powerful capabilities under the guidance of

the derived credit assignment.

Table 5: Detailed Combating Statistics
1st ours 3rd 4th 5th 6th 7th

Kills 275 275 241 216 181 146 84
Death 220 186 247 195 200 240 221

Suicide 0 2 20 23 17 7 22

Table 5 shows details of the competition. With a solid per-
formance, our agent achieves the equally maximum number
of kills and least number of deaths at the same time. From
the released competition videos, our agent is able to shoot
on the enemies accurately once they show up in our sight
and search for the enemies when being attacked. On the de-
fense part, benefiting from the derived potential function,
our agent keeps moving most of the time and seldom gets
stuck. The high speed moving makes it difficult for the op-
ponent to aim at it, and also increases the chance of explor-
ing the unknown regions to get supplies, e.g., health kits and
armors.

Our agent has undesirable suicides, which can be further
improved by incorporating image segmentation in the ab-
straction procedure. Suicide may result from a bomb explo-
sion of its own weapons, such as rockets, or special terrain,
e.g., walking on lava. Avoiding suicides requires to deal with
special terrain and weapon features. In order to maintain the
versatility of our framework, we do not include targeted cat-
egories to handle those situations currently.

6 Conclusions
In this paper, we propose a new framework to assign credits
for non-terminal state-action pairs in an automated manner,
in order to accelerate the learning process of the deep re-
inforcement learning. In particular, we introduce relational
reinforcement learning as a compact representation of deep
reinforcement learning. And we solve it to derive the optimal
value function, which is then used as the potential function
to assign credits for state-action pairs in deep reinforcement
learning. Comparing with previous credit assignment meth-
ods, our framework not only accelerates the training speed
but also improves the final performance. Evaluation on the
Doom game has shown that our method has improved the
performance significantly, which manifests in outperform-
ing previous state-of-the-art agents and winning a runner-up
in a Doom competition.
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