
Double Neural Counterfactual Regret Minimization

Hui Li1, Kailiang Hu1, Zhibang Ge1, Tao Jiang1, Yuan Qi1, and Le Song1,2

Ant Financial1

Georgia Institute of Technology2

{ken.lh, hkl163251, zhibang.zg, lvshan.jt, yuan.qi, le.song}@antfin.com
lsong@cc.gatech.edu

Abstract

Counterfactual regret minimization (CRF) is a fundamen-
tal and effective technique for solving imperfect information
games. However, the original CRF algorithm only works for
discrete state and action spaces, and the resulting strategy is
maintained as a tabular representation. Such tabular represen-
tation limits the method from being directly applied to large
games and continuing to improve from a poor strategy profile.
In this paper, we propose a double neural representation for
the Imperfect Information Games, where one neural network
represents the cumulative regret, and the other represents the
average strategy. Furthermore, we adopt the counterfactual
regret minimization algorithm to optimize this double neural
representation. To make neural learning efficient, we also de-
veloped several novel techniques including a robust sampling
method, mini-batch Monte Carlo counterfactual regret min-
imization (MCCFR) and Monte Carlo counterfactual regret
minimization plus (MCCFR+) which may be of independent
interests. Experimentally, we demonstrate that the proposed
double neural algorithm converges significantly better than
the reinforcement learning counterpart. 1

Introduction
In Imperfect Information Games (IIG), a player only has
partial access to the knowledge of her opponents before
making a decision. This is similar to the real world scenar-
ios, such as trading, traffic routing, and public auction. Thus
designing methods for solving IIG is of great economic and
social benefits.

Nash equilibrium is a typical solution concept for a two-
player extensive-form game. CFR (Zinkevich et al. 2007)
is an efficient algorithm that approximate Nash equilibrium
in large games. CFR try to minimize overall counterfactual
regret and prove that the average of the strategies in all iter-
ations would converge to a Nash equilibrium. However, the
original CFR only works for discrete state and action spaces,
and the resulting strategy is maintained as a tabular represen-
tation. Such tabular representation limits the method from
being directly applied to large games and continuing to im-
prove if starting from a poor strategy profile.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The more detailed version of this paper can be found in
https://arxiv.org/pdf/1812.10607.pdf.

To alleviate CFR’s large memory requirement in large
games such as heads-up no-limit Texas Hold’em, (Moravk
et al. 2017) proposed a seminal approach called DeepStack
which uses fully connected neural networks to represent
players’ counterfactual values and obtain a strategy online
as requested. However, the strategy is still represented as
a tabular form and the quality of this solution depends a
lot on the initial quality of the counterfactual network. Fur-
thermore, the counterfactual network is estimated separately,
and it is not easy to continue improving both counterfactual
network and the tabular strategy profile in an end-to-end op-
timization framework. (Heinrich, Lanctot, and Silver 2015)
or (Heinrich and Silver 2016) proposed end-to-end fictitious
self-play approaches (XFP and NFSP respectively) to learn
the approximate Nash equilibrium with deep reinforcement
learning. In a fictitious play model, strategies are represented
as neural networks and the strategies are updated by select-
ing the best responses to their opponents’ average strategies.
This approach is advantageous in the sense that the approach
does not rely on abstracting the game, and in theory, the
strategy should continually improve as the algorithm iter-
ates more steps. However, these methods do not explicitly
take into account the hidden information in a game, and in
experiments for games such as Leduc Hold’em, these meth-
ods converge slower than tabular based counterfactual regret
minimization algorithms. (Waugh et al. 2015) used hand-
crafted features of the information sets to estimates the coun-
terfactual regret. However, it need traversals of the full game
tree which is infeasible in large games.

Thus it remains an open question whether the purely
neural-based end-to-end approach can achieve comparable
performance to tabular based CFR approach. In the paper,
we partially resolve this open question by designing a double
neural counterfactual regret minimization algorithm which
can match the performance of tabular based counterfactual
regret minimization algorithm. We employed two neural net-
works, one for the cumulative regret, and the other for the
average strategy. We show that careful algorithm design al-
lows these two networks to track the cumulative regret and
average strategy respectively, resulting in a converging neu-
ral strategy. Furthermore, in order to improve the conver-
gence of the neural algorithm, we also developed a new sam-
pling technique which has lower variance than the outcome
sampling, while being more memory efficient than the exter-

nal sampling. In experiments with Leduc Hold’em and One-
card poker, we showed that the proposed double neural al-
gorithm can converge to comparable results produced by its
tabular counterpart while performing much better than deep
reinforcement learning method. The current results open up
the possibility for a purely neural approach to directly solve
large IIG.

Background
Representation of Extensive-Form Game
We define the components of an extensive-form game
following (Osborne and Ariel 1994). A finite set N =
{0, 1, ..., n − 1} of players. Define hvi as the hidden vari-
able of player i in IIG. H refers to a finite set of histo-
ries. Each member h = (hvi)i=0,1,...,n−1(al)l=0,...,L−1 =
hv0h

v
1...h

v
n−1a0a1...aL−1 of H denotes a possible history

(or state), which consists of each player’s hidden variable
and L actions taken by players including chance. For player
i, h also can be denoted as hvi h

v
−ia0a1...aL−1, where hv−i

refers to the opponent’s hidden variables. The empty se-
quence ∅ is a member of H . hj v h denotes hj is a pre-
fix of h. Z ⊆ H denotes the terminal histories and any
member z ∈ Z is not a prefix of any other sequences.
A(h) = {a : ha ∈ H} is the set of available actions in non-
terminal history h ∈ H \Z. A player function P (h) returns
the player who acts at history h ∈ N ∪{c}, where c denotes
the chance, which usually is -1. P (h) is the player who takes
an action after history h. Ii of a history {h ∈ H : P (h) = i}
is an information partition of player i. A set Ii ∈ Ii is an
information set of player i and Ii(h) refers to information
set Ii at state h. Generally, Ii indicates a sequence in IIG,
i.e., hvi a0a2...aL−1. For Ii ∈ Ii we denote by A(Ii) the set
A(h) and by P (Ii) the player P (h) for any h ∈ Ii. For each
player i ∈ N a utility function ui(z) defines the payoff of
the terminal state z.

Strategy and Nash equilibrium
The strategy in an extensive-form game contains the fol-
lowing components. A strategy profile σ = {σi|σi ∈
Σi, i ∈ N} is a collection of strategies for all players,
where Σi is the set of all possible strategies for player i.
σ−i refers to all strategies in σ expect σi. For play i ∈
N the strategy σi(Ii) is a function, which assigns an ac-
tion distribution over A(Ii) to information set Ii. σi(a|h)
denotes the probability of action a taken by player i ∈
N ∪ {c} at state h. In IIG, ∀h1, h2 ∈ Ii , we have Ii =
Ii(h1) = Ii(h2), σi(Ii) = σi(h1) = σi(h2), σi(a|Ii) =
σi(a|h1) = σi(a|h2). For iterative method such as CFR,
σt refers to the strategy profile at t-th iteration. The state
reach probability of history h is denoted by πσ(h) if play-
ers take actions according to σ. For an empty sequence
πσ(∅) = 1. The reach probability can be decomposed
into πσ(h) = πσi (h)πσ−i(h) according to each player’s
contribution, where πσi (h) =

∏
h′avh,P (h′)=P (h) σi(a|h′)

and πσ−i(h) =
∏
h′avh,P (h′) 6=P (h) σ−i(a|h′). The informa-

tion set reach probability of Ii is defined as πσ(Ii) =∑
h∈Ii π

σ(h). If h′ v h, the interval state reach probabil-
ity from state h′ to h is defined as πσ(h′, h), then we have

πσ(h′, h) = πσ(h)/πσ(h′). πσi (Ii), πσ−i(Ii), πσi (h′, h), and
πσ−i(h

′, h) are defined similarly.

Counterfactual Regret Minimization
In large and zero-sum IIG, CFR is proved to be an effi-
cient method to compute Nash equilibrium (Zinkevich et al.
2007), (Brown and Sandholm 2017) or (Moravk et al. 2017).
We present some key ideas of this method as follows.

Lemma 1: The state reach probability of one player is
proportional to posterior probability of the opponent’s hid-
den variable, i.e., p(hv−i|Ii) ∝ πσ−i(h), where hvi and Ii
indicate a particular h. (We provide the proof in (Li et al.
2018).)

For player i and strategy profile σ, the counterfactual
value (CFV) vσi (h) at state h is define as

vσi (h) =
∑

hvz,z∈Z

πσi (h, z)u′i(z). (1)

where u′i(z) = πσ−i(z)ui(z) is the expected reward
of player i with respective to the approximated pos-
terior distribution of the opponent’s hidden variable.
The action counterfactual value of taking action a is
vσi (a|h) = vσi (ha) and the regret of taking this action
is rσi (a|h) = vσi (a|h) − vσi (h). Similarly, the CFV of
information set Ii is vσi (Ii) =

∑
h∈Ii v

σ
i (h) and the

regret is rσi (a|Ii) =
∑
z∈Z,havz,h∈Ii π

σ
i (ha, z)u′i(z) −∑

z∈Z,hvz,h∈Ii π
σ
i (h, z)u′i(z). Then the cumulative regret

of action a after T iterations is

RTi (a|Ii) = RT−1i (a|Ii) + rσ
T

i (a|Ii). (2)

where R0
i (a|Ii) = 0. Define RT,+i (a|Ii) =

max(RTi (a|Ii), 0), the current strategy at T + 1 iter-
ation will be updated by

σT+1
i (a|Ii) =


RT,+i (a|Ii)∑

a∈A(Ii)

RT,+i (a|Ii)
if

∑
a∈A(Ii)

RT,+i (a|Ii) > 0

1
|A(Ii)| otherwise.

(3)
The average strategy σ̄iT after T iterations is defined as:

σ̄i
T (a|Ii) =

∑T
t=1 π

σt

i (Ii)σ
t
i(a|Ii)∑T

t=1 π
σt
i (Ii)

. (4)

where πσ
t

i (Ii) denotes the information set reach probability
of Ii at t-th iteration and is used to weight the corresponding
current strategy σti(a|Ii). Define sti(a|Ii) = πσ

t

i (Ii)σ
t
i(a|Ii)

as the additional numerator in iteration t, then the cumula-
tive numerator can be defined as ST (a|Ii) = ST−1(a|Ii) +
sTi (a|Ii), where S0(a|Ii) = 0.

Monte Carlo CFR
Vanilla CFR needs to traverse the entire game tree which is
infeasible in large game. (Lanctot et al. 2009) proposed a
sample-based algorithms called Monte Carlo counterfactual
regret minimization(MCCFR) which traverse part of game
tree . Define Q = {Q1, Q2, ..., Qm}, where Qj ∈ Z is a
block of sampling terminal histories in each iteration. De-
fine qQj as the probability of considering block Qj , where

∑m
j=1 qQj = 1. Define q(z) =

∑
j:z∈Qj qQj as the proba-

bility of considering a particular terminal history z. For in-
formation set Ii, a sample estimate of counterfactual value
is ṽσi (Ii|Qj) =

∑
h∈Ii,z∈Qj ,hvz

1
q(z)π

σ
−i(z)π

σ
i (h, z)ui(z).

Lemma 2: Ej∼qQj [ṽσi (Ii|Qj)] = vσi (Ii) (see the proof
of Lemma 1 in (Lanctot et al. 2009).)

Define σrs as sampling strategy profile, where σrsi is
the sampling strategy for player i and σrs−i are the sampling
strategies for players expect i. Particularly, for both external
sampling and outcome sampling proposed by (Lanctot et al.
2009), σrs−i = σ−i. The regret of the sampled action a ∈
A(Ii) is defined as

r̃σi ((a|Ii)|Qj) =
∑

z∈Qj ,havz,h∈Ii

πσi (ha, z)ursi (z)

−
∑

z∈Qj ,hvz,h∈Ii

πσi (h, z)ursi (z)
, (5)

where ursi (z) = ui(z)/π
σrs

i (z) is a new utility weighted
by 1/πσ

rs

i (z). The sample estimate for cumulative re-
gret of action a after T iterations is R̃Ti ((a|Ii)|Qj) =

R̃T−1i ((a|Ii)|Qj) + r̃σ
T

i ((a|Ii)|Qj) with R̃0
i ((a|Ii)|Qj) =

0.

Double Neural Counterfactual Regret
Minimization

In this section, we will explain our double neural CFR al-
gorithm, where we employ two neural networks, one for the
cumulative regret, and the other for the average strategy.

As shown in Figure 1 (A), standard CFR-family meth-
ods such as CFR (Zinkevich et al. 2007), outcome-sampling
MCCFR, external sampling MCCFR (Lanctot et al. 2009),
and CFR+ (Tammelin 2014), (Johanson et al. 2012), (Burch
et al. 2012) need to use two large tabular-based memories
MR and MS to record the cumulative regret and average
strategy for all information sets. Such tabular representation
makes these methods difficult to apply to large extensive-
form games with limited time and space (Burch 2017).

In contrast, we will use two deep neural networks to com-
pute approximate Nash equilibrium of IIG as shown in Fig-
ure 1 (B). Different from NFSP, our method is based on the
theory of CFR, where the first network is used to learn the
cumulative regret and the other is to learn the cumulative
numerator of the average strategy profile. With the help of
these two networks, we do not need to use a large memory

to save the key information of the entire game tree. In prac-
tice, the proposed double neural method can achieve a lower
exploitability with fewer iterations than NFSP. In addition,
we present experimentally that our double neural CFR can
also continually improve after initialization from a poor tab-
ular strategy.

Overall Framework
An algorithm in the CFR framework needs to be able to an-
swer two queries:

1. what is the current strategy σt+1(a|Ii) for iteration t+ 1;
2. and what is the average strategy σ̄ti(a|Ii) after t iterations;
∀i ∈ N, ∀Ii ∈ Ii,∀a ∈ A(Ii),∀t ∈ [1, T]. Thus, our neural
networks are designed to address the needs for these two
queries respectively.

For the first query. According to Eq. (3), current strategy
σt+1(a|Ii) is computed by the cumulative regret Rt(a|Ii).
Given information set Ii and action a, we design a neural
network RegretSumNetwork(RSN) R(a, Ii|θtR) to learn
Rt(a|Ii), where θtR is the parameter in the network at t-th
iteration. As shown Figure 1 (b), define memory MR =

{(Ii, r̃σ
t

i ((a|Ii)|Qj))|∀i ∈ N, ∀a ∈ A(Ii), h ∈ Ii, h v
z, z ∈ Qj}. Each member of MR is the visited infor-
mation set Ii and the corresponding regret r̃σ

t

i ((a|Ii)|Qj),
where Qj is the sampled block in t-th iteration. According
to Eq. (2), we can estimate R(a, Ii|θt+1

R) using the follow-
ing optimization:

θt+1
R ← argmin

θt+1
R

∑
(Ii,r̃σ

t
i ((a|Ii)|Qj))∈MR

(
R(a, Ii|θtR)

+ r̃σ
t

i ((a|Ii)|Qj)−R(a, Ii|θt+1
R)

)2
. (6)

For the second query. According to Eq. (4), the approxi-
mate Nash equilibrium is the weighted average of all pre-
vious strategies over T iterations. We only need to track
the numerator in Eq. (4) since the denominator is used to
normalize the summation. Similar to the cumulative regret,
we employ another deep neural network AvgStrategyNet-
work(ASN) to learn the cumulative numerator of the av-
erage strategy. Define MS = {(Ii, πσ

t

i (Ii)σ
t
i(a|Ii))|∀i ∈

N, ∀a ∈ A(Ii), h ∈ Ii, h v z, z ∈ Qj}. Each member
of MS is the visited information set Ii and the value of
πσ

t

i (Ii)σ
t
i(a|Ii), where Qj is the sampled block in t-th it-

eration. Then the parameter θt+1
S can estimated by the fol-

𝐼1

𝐼2 𝐼3

𝐼4𝑧1 𝑧2 𝑧3

𝑧4 𝑧5

𝑎1 𝑎2

𝑎3 𝑎4 𝑎5 𝑎6

𝑎7 𝑎8

𝑅𝑖
𝑡−1(𝑎|𝐼𝑖)

+
𝑅𝑖
𝑡(𝑎|𝐼𝑖)

𝑠𝑖
𝑡(𝑎|𝐼𝑖)

𝑆𝑖
𝑡−1(𝑎|𝐼𝑖)

+
𝑆𝑖
𝑡(𝑎|𝐼𝑖)

𝑞𝑢𝑒𝑟𝑦

𝑞𝑢𝑒𝑟𝑦

Regret Matching

𝐼1

𝐼2 𝐼3

𝐼4𝑧1 𝑧2 𝑧3

𝑧4 𝑧5

𝑎1 𝑎2

𝑎3 𝑎4 𝑎5 𝑎6

𝑎7 𝑎8

𝑠𝑖
𝑡(𝑎|𝐼𝑖)

Regret Matching

all 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡𝑠

all 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡𝑠

RegretSumNetwork

𝑞𝑢𝑒𝑟𝑦

𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡𝑠

AvgStrategyNetwork

𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡𝑠

+

gradient
descent

+Tabular Method Neural Method

gradient
descent

 𝑟𝑖
𝜎𝑡
((𝑎|𝐼𝑖)|𝑄𝑗) 𝑟𝑖

𝜎𝑡
((𝑎|𝐼𝑖)|𝑄𝑗)

BA

Figure 1: (A) tabular based CRF, and (B) our double neural based CRF framework.

lowing optimization:

θt+1
S ← argmin

θt+1
S

∑
(Ii,sti(a|Ii))∈MS

(
S(a, Ii|θtS)

+ sti(a|Ii)− S(a, Ii|θt+1
S)

)2
. (7)

Recurrent Neural Network Representation
In order to define our R and S network, we need to repre-
sent the information set Ii ∈ I in extensive-form games. In
such games, players take action in alternating fashion and
each player makes a decision according to the observed his-
tory. In this paper, we model the behavior sequence as a
recurrent neural network and each action in the sequence
corresponds to a cell in RNN. Figure 2 (A) provides an il-
lustration of the proposed deep sequential neural network
representation for information sets. Here we will use LSTM
for the representation. Furthermore, different position in the
sequence may contribute differently to the decision mak-
ing, we will add an attention mechanism (Desimone and
Duncan 1995), (Cho, Courville, and Bengio 2015) to the
LSTM architecture to enhance the representation. For ex-
ample, the player may need to take a more aggressive strat-
egy after beneficial public cards are revealed. Thus the in-
formation, after the public cards are revealed may be more
important. More specifically, for l-th cell, define xl as the
input vector (which can be either player or chance actions),
el as the hidden layer embedding, φ∗ as a general nonlin-
ear function. Each action is represented by a LSTM cell,
which has the ability to remove or add information to the
cell state with three different gates. Define the notation ·
as element-wise product. The first forgetting gate layer
is defined as gfl = φf (wf [xl, el−1]), where [xl, el−1] de-
notes the concatenation of xl and el−1. The second input
gate layer decides which values to update and is defined
as gil = φi(w

i[xl, el−1]). A nonlinear layer output a vec-
tor of new candidate values C̃l = φc(w

l[xl, el−1]) to de-
cide what can be added to the state. After the forgetting
gate and the input gate, the new cell state is updated by
Cl = gfl · Cl−1 + gil · C̃l. The third output gate is defined
as gol = φo(w

o[xl, el−1]). Finally, the updated hidden em-
bedding is el = gol · φe(Cl). As shown in Figure 2 (A), for
each LSTM cell j, the vector of attention weight is learned

by an attention network. Each member in this vector is a
scalar αj = φa(waej). The attention embedding of l-th cell
is then defined as eal =

∑l
j=1 αj · ej , which is the summa-

tion of the hidden embedding ej and the learned attention
weight αj . The final output of the network is predicted by a
value network, which is defined as

ỹl := f(a, Ii|θ) = wyφv(e
a
l), (8)

where θ is the parameters in the defined sequential neu-
ral networks. Specifically, φf , φi, φo are sigmoid func-
tions. φc and φe are hyperbolic tangent functions. φa and φv
are rectified linear functions. The proposed RSN and ASN
share the same neural architecture, but use different param-
eters. That is R(a, Ii|θtR) = f(a, Ii|θtR) and S(a, Ii|θtS) =
f(a, Ii|θtS). R(·, Ii|θtR) and S(·, Ii|θtS) denote two vectors
of inference value for all a ∈ A(Ii).

Continual Improvement
With the proposed framework of double neural CFR, it is
easy to initialize the neural networks from an existing strat-
egy profile based on the tabular or neural representation. For
information set Ii and action a, define R′i(a|Ii) as the cu-
mulative regret and S

′
(a|Ii) as the cumulative numerator of

average strategy. We can clone the cumulative regret for all
information sets and actions by optimizing

θ∗R ← argmin
θR

∑
i∈N,Ii∈Ii,a∈A(Ii)

(
R(a, Ii|θR)−R

′
(a|Ii)

)2

.

(9)

Similarly, the parameters θ∗S for cloning the cumulative nu-
merator of average strategy can be optimized in the same
way. Based on the learned θ∗R and θ∗S , we can warm start the
double neural networks and continually improve beyond the
tabular strategy profile.

Overall Algorithm
Algorithm 1 provides a summary of the proposed double
neural counterfactual regret minimization algorithm. In the
first iteration, if the system warm starts from tabular based
CFR or MCCFR methods, the techniques in section Contin-
ual Improvement will be used to clone the cumulative re-
grets and strategy. If there is no warm start initialization, we
can start our algorithm by randomly initializing the param-
eters in RSN and ASN at iteration t = 1. Then sampling

…

Average Strategy
Deep Network

Regret Sum
Deep Network

c1 c2 c3 c4 c5 c6

+

e1 e2 e3 e4 e5 e6

a1 a2 a3 a4 a5 a6

 𝑦6

𝛼1

[𝛼1, 𝛼2, … , 𝛼6]

10 10 20 50

Mini-batch
Robust

Sampling

player 0

player 1

chance
Sequential Representation

Attention
Network

Value
Network

𝛼2 𝛼3 𝛼4 𝛼5 𝛼6

A B

Figure 2: (A) architecture of the sequential neural networks. (B) an overview of the double neural method.

methods will return the counterfactual regret and the numer-
ator of average strategy for the sampled information sets in
this iteration, and they will be saved in memoriesMR and
MS respectively. Then these samples will be used by the
NeuralAgent algorithm from Algorithm2 to optimize RSN
and ASN. Further details for the sampling methods and the
NeuralAgent fitting algorithm will be discussed in the next
section.

Algorithm 1: Double Neural CFR
1 Function Agent(T , b):
2 For t = 1 to T do
3 if t = 1 and using warm starting then
4 initialize θtR and θtS from a checkpoint
5 t← t+ 1 . skip cold starting

6 else
7 initialize θtR and θtS randomly.
8 MR,MS ← sampling methods for CFV and

average strategy.
9 sum aggregate the value inMR by

information set.
10 remove duplicated records inMS .
11 θtR ← Neural(R(·|θt−1R),MR, θ

t−1
R , β∗R)

12 θtS ← Neural(S(·|θt−1S),MS , θ
t−1
S , β∗S)

13 return θtR, θtS

Efficient Training
In this section, we will propose three techniques to improve
the efficiency of the double neural method. These algorithms
can also be used separately in other CFR-family methods.

Robust Sampling Techniques
Theoretically, outcome sampling is more memory efficient
than the external sampling, since in outcome sampling only
one trajectory is sampled according to strategy profile while
in the external sampling, player i will traverse all actions
for all information set Ii ∈ Ii and the opponent players
including chance sample one action. Therefore many infor-
mation sets will be visited in a sampling process and block
Qi ∈ Q will contains many terminal nodes in external sam-
pling. In outcome sampling method, the weighted utility
ursi (z) = ui(z)

πσi (z) for terminal node depends on the con-
crete reach probability σi(z) in each iteration, therefore it
will lead to a high variance and slow down the convergence
of the resulting strategy profile.

In this paper, we proposed a new and robust sampling
technique which has lower variance than outcome sampling,
while being more memory efficient than the external sam-
pling. In this robust sampling method, the sampling profile
is defined as σrs(k) = (σ

rs(k)
i , σ−i), where player i will

randomly select k actions according to sampling strategy
σ
rs(k)
i (Ii) for each information set Ii and other players will

randomly select one action according to strategy σ−i.

Specifically, if player i randomly selects min(k, |A(Ii)|)
actions according to discrete uniform distribu-
tion unif(0, |A(Ii)|) at information set Ii, i.e.,
σ
rs(k)
i (a|Ii) = min(k,|A(Ii)|)

|A(Ii)| , then

πσ
rs(k)

i (Ii) =
∏

h∈Ii,h′vh,
h′avh,h′∈I′i

min(k, |A(I ′i)|)
|A(I ′i)| (10)

and the weighted utility urs(k)i (z) will be a constant num-
ber in each iteration, which has a low variance. Because the
weighted utility no longer requires explicit knowledge of the
opponent’s strategy, we can use this sampling method for on-
line regret minimization. For simplicity, k = max refers to
k = maxIi∈I |A(Ii)| in the following sections.

Lemma 3: If k = max and ∀i ∈ N, ∀Ii ∈ Ii,∀a ∈
A(Ii), σ

rs(k)
i (a|Ii) ∼ unif(0, |A(Ii)|), then robust sam-

pling is the same as external sampling.
Lemma 4: If k = 1 and σrs(k)i = σi, then robust sam-

pling is the same as outcome sampling.
We provide the proof of Lemma 3 and Lemma 4 in (Li

et al. 2018).

Mini-batch Techniques
Mini-batch MCCFR: Traditional outcome sampling and
external sampling only sample one block in an iteration and
provide an unbiased estimation of origin CFV according to
Lemma 2. In this paper, we present a mini-batch Monte
Carlo technique and randomly sample b blocks in one iter-
ations. Let Qj denote a block of terminals sampled accord-
ing to the scheme in section Robust Sampling Techniques
at j−th time, then mini-batch CFV with b mini-batches for
information set Ii can be defined as

ṽσi (Ii|b) =

b∑
j=1

ṽσi (Ii|Qj)
b

. (11)

Furthermore, we can show that ṽσi (Ii|b) is an unbiased
estimator of the counterfactual value of Ii: Lemma 5:
EQj∼Robust Sampling[ṽσi (Ii|b)] = vσi (Ii). (we present the proof
in (Li et al. 2018).) Similarly, the cumulative mini-batch
regret of action a is R̃Ti ((a|Ii)|b) = R̃T−1i ((a|Ii)|b) +

ṽσ
T

i ((a|Ii)|b)− ṽσ
T

i (Ii|b), where R̃0
i ((a|Ii)|b) = 0. In prac-

tice, mini-batch technique can sample b blocks in parallel
and help MCCFR to converge faster.

Mini-Batch MCCFR+: When optimizing counterfac-
tual regret, CFR+ (Tammelin 2014) substitutes the regret-
matching algorithm (Hart and Mas-Colell 2000) with regret-
matching+ and can converge faster than CFR. However,
(Burch 2017) showed that MCCFR+ actually converge
slower than MCCFR when mini-batch is not used. In our
paper, we derive mini-batch version of MCCFR+ which up-
dates cumulative mini-batch regret R̃T,+((a|Ii)|b) up to iter-
ation T by

(
R̃T−1,+i ((a|Ii)|b)+ṽσ

T

i ((a|Ii)|b)−ṽσ
T

i (Ii|b)
)+

for T > 0. If T = 0, R̃T,+((a|Ii)|b) =
(
ṽσ

T

i ((a|Ii)|b) −
ṽσ

T

i (Ii|b)
)+

. where (x)+ = max(x, 0). In practice, we find
that mini-batch MCCFR+ converges faster than mini-batch

MCCFR when specifying a suitable mini-batch size.

Neural Agent for Optimization

Algorithm 2: Optimization of Deep Neural Network

1 Function Neural(f(·|·),M, θT−1, β∗):
2 initialize optimizer, scheduler
3 θT ← θT−1, lbest ←∞, tbest ← 0
4 For t = 1 to βepoch do
5 loss← [] . initialize loss as an empty list

6 For each training epoch do
7 {x(i), y(i)}mi=1 ∼M . sampling a mini-batch

8 batch loss← 1
m

∑m
i=1(f(x(i)|θT−1) +

y(i) − f(x(i)|θT))2

9 back propagation batch loss with
learning rate lr

10 clip gradient of θT to [−ε, ε]d
11 optimizer(batch loss)
12 loss.append(batch loss)

13 lr ← sheduler(lr) . reduce learning rate.

14 if avg(loss) < βloss then
15 θTbest ← θT , early stopping.
16 else if avg(loss) < lbest then
17 lbest = avg(loss), tbest ← t, θTbest ← θT

18 if t− tbest > βre then
19 lr ← βlr . reset learning rate.

20 return θT

Define βepoch as training epoch, βlr as learning rate, βloss
as the criteria for early stopping, βre as the upper bound
for the number of iterations from getting the minimal loss
last time, θt−1 as the parameter to optimize, f(·|θt−1) as
the neural network,M as the training sample consisting in-
formation set and the corresponding target. To simplify no-
tations, we use β∗ to denote the set of hyperparameters in
the proposed deep neural networks. β∗R and β∗S refer to the
sets of hyperparameters in RSN and ASN respectively. Al-
gorithm 2 presents the details of how to optimize the pro-
posed neural networks.

Both R(a, Ii|θt+1
R) and S(a, Ii|θtS) are optimized by

mini-batch stochastic gradient descent method. In this pa-
per, we use Adam optimizer (Kingma and Ba 2014) with
both momentum and adaptive learning rate. Some other op-
timizers in (Ruder 2017), however, do not achieve better ex-
perimental results. In practice, existing optimizers could not
return a relatively low enough loss because of potential sad-
dle point or local minima. To obtain a relatively higher ac-
curacy and lower optimization loss, we use a carefully de-
signed scheduler to reduce the learning rate when the loss
has stopped decrease. Specifically, the scheduler reads a
metrics quantity, e.g, mean squared error, and if no improve-
ment is seen for a number of epochs, the learning rate is re-
duced by a factor. In addition, we will reset the learning rate
in both optimizer and scheduler once loss stops decrease in
βre epochs. Gradient clipping mechanism is used to limit the

magnitude of the parameter gradient and make optimizer be-
have better in the vicinity of steep cliffs. After each epoch,
the best parameter will be updated. Early stopping mecha-
nism is used once the lowest loss is less than the specified
criteria βloss.

Experiment
The proposed double neural CFR algorithm will be eval-
uated in No-Limit Leduc Hold’em with stack size 5 and
One-Card-Poker game with 5 cards. We will compare it with
tabular CFR and deep reinforcement learning based method
such as NFSP. The experiments show that the proposed dou-
ble neural algorithm can converge to comparable results pro-
duced by its tabular counterpart while performing much bet-
ter than deep reinforcement learning method. The current
results open up the possibility for a purely neural approach
to directly solve large IIG.

Settings. To simplify the expression, the abbreviations of
different methods are defined as follows. XFP refers to the
full-width extensive-form fictitious play method in (Hein-
rich, Lanctot, and Silver 2015), NFSP refers to the reinforce-
ment learning based fictitious self-play method in (Hein-
rich and Silver 2016). RS-MCCFR refers to the proposed
robust sampling MCCFR. This method with regret match-
ing+ acceleration technique is denoted by RS-MCCFR+.
To evaluate the contribution of each neural agent, we re-
place the tabular based cumulative regret and numerator
with RSN and ANS separately. These methods only contain-
ing one neural network are denoted by RS-MCCFR+-RSN
and RS-MCCFR+-ASN respectively. RS-MCCFR+-RSN-
ASN refers to the proposed double neural MCCFR. More
specifically, we investigated the following questions.

A B C

Figure 3: Comparison of different CFR-family methods in
Leduc Hold’em. (A) Performance of robust sampling with
different batch size. (B) Performance of robust sampling
with different parameter k by iteration. (C) Performance by
the number of touched node.

Is mini-batch sampling helpful? Figure 3(A) presents
the convergence curves of the proposed robust sampling
method with k = max under different mini-batch sizes
(b=1, 1000, 5000, 10000 respectively). The experimental re-
sults show that larger batch sizes generally lead to better
strategy profiles. Furthermore, the convergence for b = 5000
is as good as b = 10000. Thus in the later experiments, we
set the mini-batch size equal to 5000.

Is robust sampling helpful? Figure 3 (B) and (C)
presents convergence curves for outcome sampling, exter-

nal sampling(k = max) and the proposed robust sampling
method under the different number of sampled actions. The
outcome sampling cannot converge to a low exploitability
smaller than 0.1 after 1000 iterations (touch more than 107

nodes as shown in Figure 3(C) because of the high variance.
The proposed robust sampling algorithm with k = 1, which
only samples one trajectory like the outcome sampling, can
achieve a better strategy profile after the same number of it-
erations. With an increasing k, the robust sampling method
achieves an even better convergence rate. Experiment results
show k = 3 and 5 have a similar trend with k = max, which
demonstrates that the proposed robust sampling achieves
similar strategy profile but requires less memory than the
external sampling. We choose k = 3 for the later experi-
ments in Leduc Hold’em Poker. Figure 3 (C) presents the
results in a different way and displays the relation between
exploitability and the cumulative number of touched nodes.
The robust sampling with small k is just as good as the ex-
ternal sampling while being more memory efficient on the
condition that each algorithm touches the same number of
nodes.

A B C

Figure 4: Performance of different methods in Leduc
Hold’em. (A) comparison of NSFP, XFP and the proposed
double neural method. (B) each contribution of RSN and
ASN. (C) continue improvement from tabular methods

A B C

Figure 5: Comparison of different CFR-family methods and
neural network methods in One-Card-Poker. (A) Compari-
son of the robust sampling with different mini-batch size.
(B) Comparison of the outcome sampling and the robust
sampling with different sample actions k. (C) Comparison of
tabular based RS-MCCFR+ and the double neural method.

How does double neural CRF compared to tabular
counterpart, XFP and NFSP? To obtain an approximation
of Nash equilibrium, Figure 4(A) demonstrates that NFSP

needs 106 iterations to reach a 0.06-Nash equilibrium, and
requires 2× 105 state-action pair samples and 2× 106 sam-
ples for supervised learning respectively. The XFP needs
103 iterations to obtain the same exploitability, however, this
method is the precursor of NFSP and updated by a tab-
ular based full-width fictitious play. Our proposed neural
method only needs 200 iterations to achieve the same perfor-
mance which shows that the proposed double neural algo-
rithm converges significantly better than the reinforcement
learning counterpart. In practice, our double neural method
can achieve an exploitability of 0.02 after 1000 iterations,
which is similar to the tabular method.

What is the individual effect of RSN and ASN? Fig-
ure 4(B) presents ablation study of the effects of RSN
and ASN network respectively. Both MCCFR+-RSN and
MCCFR+-ASN, which only employ one neural network,
perform only slightly better than the double neural method.
All the proposed neural methods can match the performance
of the tabular based method. For RSN, we set the hyperpa-
rameters as follows: neural batch size is 256, hidden size is
128 and learning rate βlr = 0.001. A scheduler, who will
reduce the learning rate based on the number of epochs and
the convergence rate of loss, help the neural agent to obtain
a high accuracy. The learning rate will be reduced by 0.5
when loss has stopped improving after 10 epochs. The lower
bound on the learning rate of all parameters in this scheduler
is 10−6. To avoid the algorithm converging to potential lo-
cal minima or saddle point, we will reset the learning rate to
0.001 and help the optimizer to learn a better performance.
θTbest is the best parameters to achieve the lowest loss after
T epochs. If average loss for epoch t is less than the spec-
ified criteria βloss=10−4, we will early stop the optimizer.
We set βepoch = 2000 and update the optimizer 2000 max-
imum epochs. For ASN, we set the hidden size as 256, the
loss of early stopping criteria as 10−5. The learning rate will
be reduced by 0.7 when loss has stopped improving after 15
epochs. Other hyperparameters in ASN are similar to RSN.

How well does continual improvement work? In prac-
tice, we usually want to continually improve our strategy
profile from an existing checkpoint (Brown and Sandholm
2016). In the framework of the proposed neural counterfac-
tual regret minimization algorithm, warm starting is easy
and friendly. Firstly, we employ two neural networks to
clone the existing tabular based cumulative regret and the
numerator of average strategy by optimizing Eq. (9). Then
the double neural methods can continually improve the tab-
ular based methods. As shown in Figure 4(C), warm start
from either full-width based or sampling based CFR the
existing can lead to continual improvements. Specifically,
the first 10 iterations are learned by tabular based CFR and
RS-MCCFR+. The remaining iterations are continually im-
proved by the double neural method.

The proposed double neural method also presents compa-
rable results with tabular-based methods in the experiment
of One-Card-Poker as shown in Figure 5.

References
[Brown and Sandholm 2016] Brown, N., and Sandholm, T.
2016. Strategy-based warm starting for regret minimization
in games. 432–438. AAAI.

[Brown and Sandholm 2017] Brown, N., and Sandholm, T.
2017. Superhuman ai for heads-up no-limit poker: Libra-
tus beats top professionals. Science eaao1733.

[Burch et al. 2012] Burch, N.; Lanctot, M.; Szafron, D.; and
Gibson, R. G. 2012. Efficient monte carlo counterfactual
regret minimization in games with many player actions. In
Advances in Neural Information Processing Systems, 1880–
1888.

[Burch 2017] Burch, N. 2017. Time and space: Why imper-
fect information games are hard. PhD thesis.

[Cho, Courville, and Bengio 2015] Cho, K.; Courville, A.;
and Bengio, Y. 2015. Describing multimedia content using
attention-based encoderdecoder networks. arXiv preprint
arXiv:1507.01053.

[Desimone and Duncan 1995] Desimone, R., and Duncan, J.
1995. Neural mechanisms of selective visual attention.
Number 18, 193–222. Annual review of neuroscience.

[Hart and Mas-Colell 2000] Hart, S., and Mas-Colell, A.
2000. A simple adaptive procedure leading to correlated
equilibrium. Econometrica (65(5)):1127–1150.

[Heinrich and Silver 2016] Heinrich, J., and Silver, D. 2016.
Deep reinforcement learning from self-play in imperfect-
information games. arXiv preprint arXiv:1603.01121.

[Heinrich, Lanctot, and Silver 2015] Heinrich, J.; Lanctot,
M.; and Silver, D. 2015. Fictitious self-play in extensive-
form games. 805–813. International Conference on Machine
Learning.

[Johanson et al. 2012] Johanson, M.; Bard, N.; Lanctot, M.;
Gibson, R.; and Bowling, M. 2012. Efficient nash equi-
librium approximation through monte carlo counterfactual
regret minimization. In Proceedings of the 11th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems-Volume 2, 837–846. International Foundation for
Autonomous Agents and Multiagent Systems.

[Kingma and Ba 2014] Kingma, D. P., and Ba, J. 2014.
Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[Lanctot et al. 2009] Lanctot, M.; Kevin, W.; Martin, Z.; and
Bowling, M. 2009. Monte carlo sampling for regret mini-
mization in extensive games. In Advances in neural infor-
mation processing systems.

[Li et al. 2018] Li, H.; Hu, K.; Ge, Z.; Jiang, T.; Qi, Y.; and
Song, L. 2018. Double neural counterfactual regret mini-
mization.

[Moravk et al. 2017] Moravk, M.; Martin, S.; Neil, B.; Vil-
iam, L.; Morrill, D.; Bard, N.; Davis, T.; Waugh, K.; Johan-
son, M.; and Bowling, M. 2017. Deepstack: Expert-level
artificial intelligence in heads-up no-limit poker. Science
(6337):508–513.

[Osborne and Ariel 1994] Osborne, M. J., and Ariel, R.
1994. A course in game theory, volume 1. MIT Press.

[Ruder 2017] Ruder, S. 2017. An overview of gra-
dient descent optimization algorithms. arXiv preprint
arXiv:1609.04747.

[Tammelin 2014] Tammelin, O. 2014. Solving large imper-
fect information games using cfr+. arXiv preprint.

[Waugh et al. 2015] Waugh, K.; Morrill, D.; Bagnell, J. A.;
and Bowling, M. 2015. Solving games with functional regret
estimation. In AAAI, volume 15, 2138–2144.

[Zinkevich et al. 2007] Zinkevich, M.; Michael, J.; Michael,
B.; and Piccione, C. 2007. Regret minimization in games
with incomplete information. Advances in neural informa-
tion processing systems.

	Introduction
	Background
	Representation of Extensive-Form Game
	Strategy and Nash equilibrium
	Counterfactual Regret Minimization
	Monte Carlo CFR

	Double Neural Counterfactual Regret Minimization
	Overall Framework
	Recurrent Neural Network Representation
	Continual Improvement
	Overall Algorithm

	Efficient Training
	Robust Sampling Techniques
	Mini-batch Techniques
	Neural Agent for Optimization

	Experiment

