
Single-Agent Policy Tree Search With Guarantees

Laurent Orseau1, Levi H. S. Lelis2, Tor Lattimore1, Théophane Weber1

1DeepMind, UK
2Universidade Federal de Viçosa, Brazil∗

Abstract

We introduce two novel tree search algorithms that use a policy
to guide search. The first algorithm is a best-first enumeration
that uses a cost function that allows us to provide an upper
bound on the number of nodes to be expanded before reaching
a goal state. We show that this best-first algorithm is partic-
ularly well suited for “needle-in-a-haystack” problems. The
second algorithm, which is based on sampling, provides an
upper bound on the expected number of nodes to be expanded
before reaching a set of goal states. We show that this algo-
rithm is better suited for problems where many paths lead
to a goal. We validate these tree search algorithms on 1,000
computer-generated levels of Sokoban, where the policy used
to guide search comes from a neural network trained using
A3C. Our results show that the policy tree search algorithms
we introduce are competitive with a state-of-the-art domain-
independent planner that uses heuristic search.

Introduction1

Monte-Carlo tree search (MCTS) algorithms (Coulom 2007;
Browne et al. 2012) have been recently applied with great
success to several problems such as Go, Chess, and Shogi (Sil-
ver et al. 2016; 2017). Such algorithms are well adapted to
stochastic and adversarial domains, due to their sampling
nature and the convergence guarantee to min-max values.
However, the sampling procedure used in MCTS algorithms
is not well-suited for other kinds of problems (Nakhost 2013),
such as deterministic single-agent problems where the objec-
tive is to find any solution at all. In particular, if the reward is
very sparse—for example the agent is rewarded only at the
end of the task—MCTS algorithms revert to uniform search.
In practice such algorithms can be guided by a heuristic but,
to the best of our knowledge, no bound is known that depends
on the quality of the heuristic. For such cases one may use
instead other traditional search approaches such as A* (Hart,
Nilsson, and Raphael 1968) and Greedy Best-First Search
(GBFS) (Doran and Michie 1966), which are guided by a
heuristic cost function.

∗This work was carried out while L. H. S. Lelis was at the
University of Alberta, Canada.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Accepted for presentation at NIPS 2018.

In this paper we tackle single-agent problems from the
perspective of policy-guided search. One may view policy-
guided search as a special kind of heuristic search in which
a policy, instead of a heuristic function, is provided as input
to the search algorithm. As a policy is a probability distri-
bution over sequences of actions, this allows us to provide
theoretical guarantees that cannot be offered by value (e.g.,
reward-based) functions: we can bound the number of node
expansions—roughly speaking, the search time—depending
on the probability of the sequences of actions that reach
the goal. We propose two different algorithms with differ-
ent strengths and weaknesses. The first algorithm, called
LevinTS, is based on Levin search (Levin 1973) and pro-
vides a strict upper bound on the number of nodes to search
before finding the least-cost solution. The second algorithm,
called LubyTS, is based on the scheduling of Luby, Sinclair,
and Zuckerman (1993) for randomized algorithms and pro-
vides an upper bound on the expected number of nodes to
search before reaching any solution while taking advantage
of the potential multiplicity of the solutions. LevinTS and
LubyTS are the first policy tree search algorithms with such
guarantees. Empirical results on the PSPACE-hard domain of
Sokoban (Culberson 1999) show that LubyTS and in particu-
lar LevinTS guided by a policy learned with A3C (Mnih et
al. 2016) are competitive with a state-of-the-art planner that
uses GBFS (Hoffmann and Nebel 2001). Although we focus
on deterministic environments, LevinTS and LubyTS can be
extended to stochastic environments with a known model.

LevinTS and LubyTS bring important research areas
closer together. Namely, areas that traditionally rely on
heuristic-guided tree search with guarantees such as clas-
sical planning and areas devoted to learn control policies
such as reinforcement learning. We expect future works to
explore closer relations of these areas, such as the use of
LevinTS and LubyTS as part of classical planning systems.

Notation and background
We write N1 = {1, 2, . . .}. Let S be a (possibly uncountable)
set of states, and let A be a finite set of actions. The environ-
ment starts in an initial state s0 ∈ S. During an interaction
step (or just step) the environment in state s ∈ S receives
an action a ∈ A from the searcher and transitions determin-
istically according to a transition function T : S × A → S
to the state s′ = T (s, a). The state of the environment af-

ter a sequence of actions a1:t is written T (a1:t) which is a
shorthand for the recursive application of the transition func-
tion T from the initial state s0 to each action of a1:t, where
a1:t is the sequence of actions a1, a2, . . . at. Let Sg ⊆ S
be a set of goal states. When the environment transitions to
one of the goal states, the problem is solved and the inter-
action stops. We consider tree search algorithms and define
the set of nodes in the tree as the set of sequences of ac-
tions N := A∗ ∪ A∞. The root node n0 is the empty se-
quence of actions. Hence a sequence of actions a1:t of length
t is uniquely identified by a node n ∈ N and we define
d0(n) = d0(a1:t) := t (the usual depth d(n) of the node
is recovered with d(n) = d0(n)− 1). Several sequences of
actions (hence several nodes) can lead to the same state of the
environment, and we write N (s) := {n ∈ N : T (n) = s}
for the set of nodes with the same state. We define the set
of children C(n) of a node n ∈ N as C(n) := {na|a ∈ A},
where na denotes the sequence of actions n followed by the
action a. The state of the environment after a sequence of
actions a1:t is written T (a1:t) which is a shorthand for the
recursive application of the transition function T from the
initial state s0 to each action of a1:t. We define the target
set N g ⊆ N as the set of nodes such that the correspond-
ing states are goal states: N g := {n : T (n) ∈ Sg}. The
searcher does not know the target set in advance and only rec-
ognizes a goal state when the environment transitions to one.
If n1 = a1:t and n2 = a1:tat+1:k with k > t then we say
that a1:t is a prefix of a1:tat+1:k and that n1 is an ancestor of
n2 (and n2 is a descendant of n1).

A search tree T ∈ N ∗ is a set of sequences of actions
(nodes) such that (i) for all nodes n ∈ T , T also contains
all the ancestors of n and (ii) if n ∈ T ∩ N g, then the
tree contains no descendant of n. The leaves L(T) of the
tree T are the set of nodes n ∈ T such that T contains no
descendant of n. A policy assigns probabilities to sequences
of actions under the constraint that π(n0) = 1 and ∀n ∈
N , π(n) =

∑
n′∈C(n) π(n

′). If n′ is a descendant of n, we
define the conditional probability π(n′|n) := π(n′)/π(n).
The policy is provided as input to the search algorithm.

Let TS be a generic tree search algorithm defined as fol-
lows. At any expansion step k ≥ 1, let Vk be the set of
nodes that have been expanded (visited) before (excluding)
step k, and let the fringe set Fk :=

⋃
n∈Vk C(n) \ Vk be

the set of not-yet-expanded children of expanded nodes,
with V1 := ∅ and F1 := {n0}. At iteration k, the search
algorithm TS chooses a node nk ∈ Fk for expansion: if
nk ∈ N g , then the algorithm terminates with success. Other-
wise, Vk+1 := Vk ∪ {nk} and the iteration k + 1 starts. At
any expansion step, the set of expanded nodes is a search tree.
Let nk be the node expanded by TS at step k. We define the
search time N(TS,N g) := mink>0{k : nk ∈ N g} as the
number of node expansions before reaching a node in N g .

A policy is Markovian if the probability of an action de-
pends only on the current state of the environment, that is,
for all n1 and n2 with T (n1) = T (n2),∀a ∈ A : π(a|n1) =
π(a|n2). In this paper we consider both Markovian and non-
Markovian policies. For some function cost : N → R
over nodes, we define the cost of a state s as cost(s) :=
minn∈N (s) cost(n). Then we say that a tree search algorithm

root

.

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1

1

Figure 1: A ‘chain-and-bin’ tree.

with a cost function cost(n) expands states in best-first order
if for all states s1 and s2, if cost(s1) < cost(s2), then s1 is
visited before s2. We say that a state is expanded at its lowest
cost if for all states s, the first node n ∈ N (s) to be expanded
has cost cost(n) = cost(s).

LevinTS: policy-guided enumeration
First, we show that merely expanding nodes by decreasing
order of their probabilities can fail to reach a goal state of
non-zero probability.

Theorem 1. The version of TS that chooses at iteration k the
node nk := argmaxn∈Fk π(n) may never expand any node
of the target set N g , even if ∀n ∈ N g, π(n) > 0.

Proof. Consider the tree in Fig. 1. Under the left child of the
root is an infinite ‘chain’ in which each node has probability
1/2. Under the right child of the root is an infinite binary
tree in which each node has two children, each of conditional
probability 1/2, and thus each node has probability 2−d.
Before testing a node of depth at least 2 in the right-hand-
side binary tree (with probability at most 1/4), the search
expands infinitely many nodes of probability 1/2. Defining
the target set as any set of nodes with individual probability
at most 1/4 proves the claim.

To solve this problem, we draw inspiration from Levin
search (Levin 1973; Trakhtenbrot 1984), which (in a different
domain) penalizes the probability with computation time.
Here, we take computation time to mean the depth of a node.
The new Levin tree search (LevinTS) algorithm is a version
of TS in which the cost of a node is cost(n) := d0(n)/π(n)
(see Algorithm 1).

LevinTS also performs state cuts (see Lines 10–15 of Al-
gorithm 1). That is, LevinTS does not expand node n rep-
resenting state s if (i) the policy π is Markovian, (ii) it has
already expanded another node n′ that also represents s, and
(iii) π(n′) ≥ π(n). By performing state cuts only if these
three conditions are met, we can show that LevinTS expands
states in best-first order.

Theorem 2. LevinTS expands states in best-first order and
at their lowest cost first.

Proof. Let us first consider the case where the policy is non-
Markovian. Then LevinTS does not perform state cuts (see
Line 10 of Algorithm 1). Let n1 and n2 be two arbitrary differ-
ent nodes (sequences of actions), with cost(n1) < cost(n2).
Let n12 be the closest common ancestor of n1 and n2; it must
exist since at least the root is one of their common ancestors.

Then all nodes on the path from n12 to n1 have cost less than
cost(n1) and thus than cost(n2), due to the monotonicity of
d0 and π and thus of cost, which implies by recursion from
n12 that all these nodes and thus also n1 are expanded before
n2. Hence, if T (n1) = T (n2), this proves that all states are
visited first at their lowest cost. Also, if T (n1) 6= T (n2), this
proves that states of lower cost are visited first.

Now, if the policy is Markovian, then we need to show
that state cuts do not prevent best-first order and lowest cost.
Let n1 and n2 be two nodes representing the same state s,
where n1 is expanded before n2. Assume that no cut has
been performed before n2 is expanded. First, since no cuts
were performed, we have from the non-Markovian case that
d0(n1)
π(n1)

≤ d0(n2)
π(n2)

. Secondly, consider a sequence of actions
a1:k taken after state s, and let n1k = n1a1:k be the node
reached after taking a1:k starting from n1 and similarly for
n2k. Since the environment is deterministic, this sequence
leads to the same state sk, whether starting from n1 or from
n2. Since the policy is Markovian, π(n1k|n1) = π(n2k|n2).
Then from the condition (iii) of state cuts, if π(n1) ≥ π(n2)

d0(n1k)

π(n1k)
=
d0(n1)

π(n1)

1

π(n1k|n1)
+

k

π(n1)π(n1k|n1)

≤ d0(n2)

π(n2)

1

π(n1k|n1)
+

k

π(n2)π(n1k|n1)

=
d0(n2k)

π(n2k)
,

so the state sk has a lower or equal cost below n1 than below
n2. Since this holds for any such a1:k, n2 can be safely cut,
and by recurrence all cuts preserve the best-first ordering
and lowest costs of states. The rest of the proof is as in the
non-Markovian case.

LevinTS’s cost function allows us to provide the following
guarantee, which is an adaptation of Levin search’s theo-
rem (Solomonoff 1984) to tree search problems.
Theorem 3. Let N g be a set of target nodes, then LevinTS
with a policy π ensures that the number of node expansions
N(LevinTS,N g) before reaching any of the target nodes is
bounded by

N(LevinTS,N g) ≤ min
n∈N g

d0(n)

π(n)
.

Proof. From Theorem 2, the first state of Sg to be expanded
is the one of lowest cost, and with one of the nodes of lowest
cost, that is, with cost c := minn∈N g d0(n)/π(n). Let Tc
be the current search tree when ng is being expanded. Then
all nodes in Tc that have been expanded up to now have at
most cost c. Therefore at all leaves n ∈ L(Tc) of the current
search tree, d0(n)/π(n) ≤ c. Since each node is expanded
at most once (each sequence of actions is tried at most once)
the number of nodes expanded by LevinTS until node ng is
at most

N(LevinTS,N g) = |N (Tc)| ≤
∑

n∈L(Tc)

d0(n)

≤
∑

n∈L(Tc)

π(n)c ≤ c = min
n∈N g

d0(n)

π(n)
,

Algorithm 1: Levin tree search.

1 def LevinTS()
2 V := ∅
3 F := {n0}
4 while F 6= ∅
5 n := argminn∈F

d0(n)
π(n)

6 F := F \ {n}
7 s := T (n)
8 if s ∈ Sg
9 return true

10 if is_Markov(π)
11 if ∃n′ ∈ V : (T (n′) = s) ∧ (π(n′) ≥ π(n))
12 # s has already been visited with
13 # a higher probability: State cut
14 continue
15 V := V ∪ {n′}
16 F := F ∪ C(n)
17 return false

Algorithm 2: Sampling and execution of a single trajectory.

def sample_traj(depth)
n := n0
for d := 0 to depth
if T (n) ∈ Sg
return true

a ∼ π(.|n)
n := na

return false

where the first inequality is because each leaf of depth d0
has at most d0 ancestors, the second inequality follows
from d0(n)/π(n) ≤ c, and the last inequality is because∑
n∈L(Tc) π(n) ≤ 1, which follows from

∑
n′∈C(n) π(n

′) =

π(n), that is, each parent node splits its probability among
its children, and the root has probability 1.

The upper bound of Theorem 3 is tight within a small
factor for a tree like in Fig. 1, and is almost an equality when
the tree splits at the root into multiple chains.

LubyTS: policy-guided unbounded sampling

Multi-sampling When a good upper bound dmax is known
on the depth of a subset of the target nodes with large cu-
mulative probability, a simple idea is to sample trajectories
according to π (see Algorithm 2) of that maximum depth
dmax until a solution is found, if one exists. Call this strat-
egy multiTS (see Algorithm 3). We can then provide the
following straightforward guarantee.

Theorem 4. The expected number of node expansions before

reaching a node in N g is bounded by

E[N(multiTS(∞, dmax),N g)] ≤ dmax

π+
dmax

,

π+
dmax

:=
∑
n∈N g

d0(n)≤dmax

π(n) .

Proof. Remembering that a tree search algorithm does not
expand children of target nodes, the result follows from ob-
serving that E[N(multiTS,N g)] is the expectation of a geo-
metric distribution with success probability π+

dmax
where each

failed trial takes exactly dmax node expansions and the suc-
cess trial takes at most dmax node expansions.

This strategy can have an important advantage over
LevinTS if there are many target nodes within depth bounded
by dmax with small individual probability but large cumulative
probability.

The drawback is that if no target node has a depth shorter
than the bound dmax, this strategy will never find a solution
(the expectation is infinite), even if the target nodes have high
probability according to the policy π. Ensuring such target
nodes can be always found leads to the LubyTS algorithm.

LubyTS Suppose we are given a randomized program ρ,
that has an unknown distribution p over the halting times
(where halting means solving an underlying problem). We
want to define a strategy that can restart the program multiple
times and run it each time with a different allowed running
time so that it halts in as little cumulative time as possible
in expectation. Luby, Sinclair, and Zuckerman (1993) prove
that the optimal strategy is to run ρ for running times of
fixed lengths tp optimized for p; then either the program halts
within tp steps, or it is forced to stop and is restarted for
another tp steps and so on. This strategy has an expected run-
ning time of `p, with Lp

4 ≤ `p ≤ Lp = mint∈N1

t
q(t) where

q is the cumulative distribution function of p. Luby, Sinclair,
and Zuckerman (1993) also devise a universal restarting strat-
egy based on a special sequence2 of running times:

1 1 2 1 1 2 4 1 1 2 1 1 2 4 8 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8 16 1
1 2. . .

They prove that the expected running time of this strategy
is bounded by 192`p(log2 `p + 5) and also prove a lower
bound of 1

8`p log2 `p for any universal restarting strategy. We
propose to use instead the sequence3 A6519:

1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1
32 1 2. . .

which is simpler to compute and for which we can prove the
following tighter upper bound.

2https://oeis.org/A182105.
3https://oeis.org/A006519. Gary Detlefs (ibid) notes

that it can be computed with A6519(n) := ((n XOR n−1)+1)/2
or with A6519(n) := (n AND − n) where −n is n’s complement
to 2.

Algorithm 3: Sampling of nsims trajectories of fixed depths
dmax ∈ N1.

def multiTS(nsims, dmax)
for k := 1 to nsims
if sample_traj(dmax)
return true

return false

Algorithm 4: Sampling of nsims trajectories of depths that
follow A6519, with optional coefficient dmin ∈ N1.

def LubyTS(nsims, dmin=1)
for k := 1 to nsims
if sample_traj(dmin ∗ A6519(k))
return true

return false

Theorem 5. For all distributions p over halting times, the
expected running time of the restarting strategy based on
A6519 is bounded by mint t+

t
q(t)

(
log2

t
q(t) + 6.1

)
, where

q is the cumulative distribution of p.

The proof is provided in the appendix. We can easily im-
port the strategy described above into the tree search setting
(see Algorithm 4), and provide the following result.

Theorem 6. Let N g be the set of target nodes, then
LubyTS(∞, 1) with a policy π ensures that the expected
number of node expansions before reaching a target node is
bounded by

E[N(LubyTS(∞, 1),N g)] ≤ min
d∈N1

d+
d

π+
d

[
log2

d

π+
d

+ 6.1

]
where π+

d :=
∑
{n∈N g,d0(n)≤d} π(n) is the cumulative prob-

ability of the target nodes with depth at most d.

Proof. This is a straightforward application of Theorem 5:
The randomized program samples a sequence of actions from
the policy π, the running time t becomes the depth d0(n) of
a node n, the probability distribution p over halting times
becomes the probability of reaching a target node of depth t,
p(t) =

∑
{n∈N g,d0(n)=t} π(n), and the cumulative distribu-

tion function q becomes π+
d .

Compared to Theorem 4, the cost of adapting to an un-
known depth is an additional factor log(d/π+

d). The proof of
Theorem 5 suggests that the term log d is due to not knowing
the lower bound on d, and the term − log π+

d is due to not
knowing the upper bound. If a good lower bound dmin on
the average solution length is known, one can also multiply
A6519(n) by dmin to avoid sampling too short trajectories as
in Algorithm 4; this may lessen the factor log d while still
guaranteeing that a solution can be found if one of positive
probability exists. In particular, in the tree search domain,
the sequence A6519 samples trajectories of depth 1 half of

the time, which is likely to be quite wasteful. The optional
coefficient dmin in Algorithm 4 allows to mitigate this issue
with domain-specific knowledge. Conversely, in general it
is not possible to cap d at some upper bound, as this may
prevent finding a solution as for multiTS. Hence the factor
− log π+

d remains, which is unfortunate since π+
d can easily

be exponentially small with d.

Strengths and weaknesses
Consider a “needle-in-the-haystack problem” represented
by a perfect full and infinite binary search tree where all
nodes n have probability π(n) = 2−d(n). Suppose that the
set N g of target nodes contains a single node ng at some
depth d. According to Theorem 3, LevinTS needs to expand
no more than d0(ng)2d(n

g) nodes before expanding ng. For
this particular tree, the number of expansions is closer to
2d(n

g)+1 since there are only at most 2d(n
g)−1 nodes with

cost lower or equal to cost(ng). Theorem 6 and the matching-
order lower bound of (Luby, Sinclair, and Zuckerman 1993)
suggest LubyTS may expand in expectationO(d(ng)22d(n

g))
nodes to reach ng . This additional factor of d(n)2 compared
to LevinTS is a non-negligible price for needle-in-a-haystack
searches. For multiTS, if the depth bound dmax is larger than
d0(n

g), then the expected search time is at most and close to
dmax2

d(ng), which is a factor d(n) faster than LubyTS, unless
dmax � d(ng).

Now suppose that the set of target nodes is composed of
2d−1 nodes, all at depth d. Since all nodes at a given depth
have the same probability, LevinTS will expand at least 2d
and at most 2d+1 nodes before expanding any of the target
nodes. By contrast, because the cumulative probability of
the target nodes at depth d is 1/2, LubyTS finds a solution
in O(d log d) node expansions, which is an exponential gain
over LevinTS. For multiTS it would be dmax, which can be
worse than d log d due to the need for a large enough dmax.

LevinTS can perform state cuts if the policy is Markovian,
which can substantially reduce the algorithm’s search effort.
For example, suppose that in the binary tree above every left
child represents the same state as the root and thus is cut
off from the search tree, leaving in effect only 2d nodes for
any depth d. If the target set contains only one node at some
depth d, even when following a uniform policy, LevinTS ex-
pands only those 2d nodes. By contrast, LubyTS expands in
expectation more than O(2d) nodes. LevinTS has a memory
requirement that grows linearly with the number of nodes ex-
panded, as well as a log factor in the computation time due to
the need to maintain a priority queue to sort the nodes by cost.
By contrast, LubyTS and multiTS have a memory require-
ment that grows linearly with the solution depth, as they only
need to store in memory the trajectory sampled. LevinTS’s
memory cost could be alleviated with an iterative deepening
(Korf 1985) variant with transposition table (Reinefeld and
Marsland 1994).

Mixing policies and avoiding zero probabilities
For both LevinTS and LubyTS, if the provided policy π incor-
rectly assigns a probability too close to 0 to some sequences
of actions, then the algorithm may never find the solution.

To mitigate such outcomes, it is possible to ‘mix’ the policy
with the uniform policy so that the former behaves slightly
more like the latter. There are several ways to achieve this,
each with their own pros and cons.

Bayes mixing of policies If π1 and π2 are two policies, we
can build their Bayes average π12 with prior α ∈ [0, 1] and
1− α such that for all sequence of actions a1:t, π12(a1:t) =
απ1(a1:t) + (1− α)π2(a1:t). The conditional probability of
the next action is given by

π12(at|a<t) = w1(a<t)π1(at|a<t) + w2(a<t)π2(at|a<t)

with w1(a<t) = 1− w2(a<t) =
απ1(a<t)

απ1(a<t) + (1− α)π2(a<t)

= α
π1(a<t)

π12(a<t)
,

where w1(a<t) is the ‘posterior weight’ of the policy π1 in
π12. This ensures that for all nodes n, π12(n) ≥ απ1(n)
and π12(n) ≥ (1 − α)π2(n) which leads to the following
refinement for Theorem 3 for example (and similarly for
LubyTS):

N(LevinTS,N g) ≤

min

{
1

α
min
n∈N g

d0(n)

π1(n)
,

1

1− α
min
n∈N g

d0(n)

π2(n)

}
.

In particular, with α = 1/2, LevinTS with π12 is within a
factor 2 of the best between LevinTS with π1 and LevinTS
with π2. More than two policies can be mixed together, lead-
ing for example to a factor K compared to the best of K
policies when all prior weights are equal. This is very much
like running several instances of LevinTS in parallel, each
with its own policy, except that (weighted) time sharing is
done automatically. For example, if the provided policy π
is likely to occasionally assign too low probabilities, one
can run LevinTS with a Bayes mixture of π and the uniform
policy, with a prior weight α closer to 1 if π is likely to be
far better than the uniform policy for most instances.

Local mixing of policies, fixed rate Bayes mixing of two
policies splits the search into 2 (mostly) independent searches.
But one may want to mix at a more ‘local’ level: Along a
trajectory a1:t, if the provided policy π assigns high prob-
ability to almost all actions but a very low probability to
a few ones, we may want to use a different policy just for
these actions, and not for the whole trajectory. Thus, given
two policies π1 and π2 and ε ∈ [0, 1], the local-mixing
policy π12 is defined through its conditional probability
π12(at|a<t) := επ1(at|a<t) + (1− ε)π2(at|a<t). Then for
all a1:t,

π12(a1:t) ≥

ε|K1|(1− ε)t−|K1|︸ ︷︷ ︸
penalty

∏
k∈K1

π1(ak|a<k)
∏
k/∈K1

π2(ak|a<k) ,

where K1 is the set of steps k where π1(ak|a<k) >
π2(at|a<k). This can be interpreted as ‘At each step t, π

must pay a factor of ε to use policy π1 or a factor of 1 − ε
to use π2’. This works well for example if ε ≈ 0 and K1

is small, that is, the policy π2 is used most of the time. For
example, π1 can be the uniform policy, π1(at|a<t)=1/|A|,
and π2 is a given policy that may sometimes be wrong.

Local mixing, varying rate The problem with the previ-
ous approach is that ε needs to be fixed in advance. For
a depth d, a penalty of the number of node expansions
of 1/(1 − ε)d ≈ eεd is large as soon as d > 1/ε. If
no good bound on d is known, one can use a more adap-
tive 1 − εd(a1:t) = (t/(t + 1))γ with γ ≥ 0: This gives∏t
k=1(t/(t+ 1))γ = 1/(t+ 1)γ , which means that the max-

imum price to pay to use only the policy π2 for all the t steps
is at most (t+ 1)γ , and the price to pay each step the policy
π1 is used is approximately (t+ 1)/γ. The optimal value of
ε can also be learned automatically using an algorithm such
as Soft-Bayes (Orseau, Lattimore, and Legg 2017) where the
‘experts’ are the provided policies, but this may have a large
probability overhead for this setup.

Experiments: computer-generated Sokoban
We test our algorithms on 1,000 computer-generated lev-
els of Sokoban (Racanière et al. 2017) of 10x10 grid cells
and 4 boxes.4 for an example of a level used in our experi-
ments. For the policy, we use a neural network pre-trained
with A3C (details on the architecture and the learning pro-
cedure are in the appendix. We picked the best performing
network out of 4 runs with different learning rates. Once
the network is trained, we compare the different algorithms
using the same network’s fixed Markovian policy. Note that
for each new level, the goal states (and thus target set) are
different, whereas the policy does not change (but still de-
pends on the state). We test the following algorithms and
parameters: LubyTS(256,1), LubyTS(256,32), LubyTS(512,
32), multiTS(1, 200), multiTS(100, 200), multiTS(200, 200),
LevinTS. Excluding the small values (i.e., nsims = 1
and dmin = 1), the parameters were chosen to obtain a to-
tal number of expansions within the same order of magni-
tude. In addition to the policy trained with A3C, we tested
LevinTS, LubyTS, and multiTS with a variant of the policy
in which we add 1% of noise to the probabilities output of
the neural network. That is, these variants use the policy
π̃(a|n) = (1 − ε)π(a|n) + ε 14 where π is the network’s
policy and ε = 0.01, to guide their search. These variants
are marked with the symbol (*) in the table of results. We
compare our policy tree search methods with a version of
the LAMA planner (Richter and Westphal 2010) that uses
the lazy version of GBFS with preferred operators and queue
alternation with the FF heuristic. This version of LAMA is
implemented in Fast Downward (Helmert 2006), a domain-
independent solver. We used this version of LAMA because it
was shown to perform better than other planners on Sokoban
problems (Xie, Nakhost, and Müller 2012). Moreover, simi-
larly to our methods, LAMA searches for a solution of small
depth rather than a solution of minimal depth.

4The levels are available at https://github.com/
deepmind/boxoban-levels/unfiltered/test.

Table 1 presents the number of levels solved (“Solved”), av-
erage solution length (“Avg. length”), longest solution length
(“Max. length”), and total number of nodes expanded (“Total
expansions”). The top part of the table shows the sampling-
based randomized algorithms. In addition to the average val-
ues, we present the standard deviation of five independent
runs of these algorithms. Since LevinTS and LAMA are
deterministic, we present a single run of these approaches.
Fig. 2 shows the number of nodes expanded per level by each
method when the levels are independently sorted for each ap-
proach from the easiest to the hardest Sokoban level in terms
of node expansions. The Uniform searcher (LevinTS with a
uniform policy) with maximum 100,000 node expansions per
level—and still with state cuts—can solve no more than 9%
of the levels, which shows that the problem is not trivial.

For most of the levels, LevinTS (with the A3C policy)
expands many fewer nodes than LAMA, but has to expand
many more nodes on the last few levels. On 998 instances,
the cumulative number of expansions taken by LevinTS is
~2.7e6 nodes while LAMA expands ~3.1e6 nodes. These
numbers contrast with the number of expansions required by
LevinTS (6.6e6) and LAMA (3.15e6) to solve all 1,000 lev-
els. The addition of noise to the policy reduces the number of
nodes expanded by LevinTS while solving harder instances
at the cost of increasing the number of nodes expanded for
easier problems (see the lines of the two versions of LevinTS
crossing at the right-hand side of Fig. 2). Overall, noise re-
duces from 6.6e6 to 5e6 the total number of nodes LevinTS
expands (see Table 1). LevinTS has to expand a large number
of nodes for a small number of levels likely due to the train-
ing procedure used to derive the policy. The policy is learned
only from the 65% easiest levels solved after sampling single
trajectories—harder levels are never solved during training.
Nevertheless, LevinTS can still solve harder instances by
compensating the lack of policy guidance with search.

The sampling-based methods have a hard time reaching
90% success, but still improves by more than 20% over sam-
pling a single trajectory. LubyTS(256, 32) improves over
LubyTS(256, 1) since many solutions have length around 30
steps. LubyTS(256, 32) is as good as multiTS(200, 100) that
uses a hand-tuned upper bound on the length of the solutions.

The solutions found by LevinTS are noticeably shorter (in
terms of number of moves) than those found by LAMA. It
is remarkable that LevinTS can find shorter solutions and
expand fewer nodes than LAMA for most of the levels. This
is likely due to the combination of good search guidance
through the policy for most of the problems and LevinTS’s
systematic search procedure. By contrast, due to its sampling-
based approach, LubyTS tends to find very long solutions.

Racanière et al. (2017) report different neural-network
based solvers applied to a long sequence of Sokoban levels
generated by the same system used in our experiments (al-
though we use a different random seed to generate the levels,
we believe they are of the same complexity). Racanière et
al.’s primary goal was not to produce an efficient solver per
se, but to demonstrate how an integrated neural-based learn-
ing and planning system can be robust to model errors and
more efficient than an MCTS baseline. Their MCTS approach
solves 87% of the levels within approximately 30e6 node ex-

Algorithm Solved Avg. length Max. length Total expansions

Uniform 88 19 59 94,423,278

LubyTS(256, 1) 753± 5 41.0± 0.6 228± 18.6 63,8481± 2,434
LubyTS(256, 32) 870± 2 48.4± 0.9 1,638.4± 540.7 6,246,293± 73,382
LubyTS(512, 32) 884± 4 54.8± 4.2 3,266.6± 1,287.8 11,515,937± 211,524
LubyTS(512, 32) (*) 896± 2 50.7± 2.5 1,975.6± 904.5 10,730,753± 164,410
MultiTS(1, 200) 669± 5 41.3± 0.6 196.4± 2.2 93,768± 925
MultiTS(100, 200) 866± 4 47.8± 0.5 199.4± 0.5 3260536± 57185
MultiTS(200, 200) 881± 1 47.9± 0.7 196.4± 2.3 5,768,680± 116,152
MultiTS(200, 200) (*) 895± 3 48.8± 0.4 198.8± 1 5,389,534± 45,085

LevinTS 1,000 39.8 106 6,602,666
LevinTS (*) 1,000 39.5 106 5,026,200
LAMA 1,000 51.6 185 3,151,325

Table 1: Comparison of different solvers on the 1,000 levels of Sokoban. For randomized solvers (shown at the top part of the
table), the results are aggregated over 5 random seeds (± indicates standard deviation). (*) Uses π̃ with ε = 0.01.

Figure 2: Node expansions for Sokoban on log-scale. The levels indices (x-axis) are sorted independently for each solver from the
easiest to the hardest level. For clarity a typical run has been chosen for randomized solvers; see Table 1 for standard deviations.

pansions (25,000 per level for 870 levels, and 500 simulations
of 120 steps for the remaining 130 levels). Although LevinTS
had much stronger results in our experiments, we note that
Racanière et al.’s implementation of MCTS commits to an
action every 500 node expansions. By contrast, in our exper-
imental setup, we assume that LevinTS solves the problem
before committing to an action. This difference makes the re-
sults not directly comparable. Racanière et al.’s second solver
(I2A) is a hybrid model-free and model-based planning using
a LSTM-based recurrent neural network with more learning
components than our approaches. I2A reaches 95% success
within an estimated total of 5.3e6 node expansions (4,000 on
average over 950 levels, and 30,000 steps for the remaining
50 unsolved levels; this counts the internal planning steps).
For comparison, LevinTS with 1% noise solves all the levels
within the same total time (999 for LevinTS without noise).
Moreover, LevinTS solves 95% of the levels within a total
of less than 160,000 steps, which is approximately 168 node
expansions on average for solved levels, compared to the
reported 4,000 for I2A. Moreover, it is also not clear how
long it would take I2A to solve the remaining 5%.

Conclusions and future works
We introduced two novel tree search algorithms for single-
agent problems that are guided by a policy: LevinTS and
LubyTS. Both algorithms have guarantees on the number of
nodes that they expand before reaching a solution. LevinTS
and LubyTS depart from the traditional heuristic approach to
tree search by employing a policy instead of a heuristic func-
tion to guide search while still offering important guarantees.

The results on the computer-generated Sokoban problems
using a pre-trained neural network show that these algorithms
can largely improve through tree search upon the score of
the network during training. Our results also showed that
LevinTS is able to solve most of the levels used in our exper-
iment while expanding many fewer nodes than a state-of-the-
art heuristic search planner. In addition, LevinTS was able to
find considerably shorter solutions than the planner.

The policy can be learned by various means or it can
even be handcrafted. In this paper we used reinforcement
learning to learn the policy. However, the bounds offered
by the algorithms could also serve directly as metrics to be
optimized while learning a policy; this is a research direction
we are interested in investigating in future works.

References
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games 4(1):1–43.
Coulom, R. 2007. Efficient selectivity and backup operators
in monte-carlo tree search. In Computers and Games, 72–83.
Springer Berlin Heidelberg.
Culberson, J. C. 1999. Sokoban is PSPACE-Complete. In
Fun With Algorithms, 65–76.
Doran, J. E., and Michie, D. 1966. Experiments with the
graph traverser program. In Royal Society of London A,
volume 294, 235–259. The Royal Society.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics SSC-
4(2):100–107.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Korf, R. E. 1985. Depth-first iterative-deepening. Artificial
Intelligence 27(1):97 – 109.
Levin, L. A. 1973. Universal sequential search problems.
Problems of Information Transmission 9(3):265–266.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Opti-
mal speedup of Las Vegas algorithms. Inf. Process. Lett.
47(4):173–180.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In Pro-
ceedings of The 33rd International Conference on Machine
Learning, volume 48, 1928–1937. PMLR.
Nakhost, H. 2013. Random Walk Planning: Theory, Practice,
and Application. Ph.D. Dissertation, University of Alberta.
Orseau, L.; Lattimore, T.; and Legg, S. 2017. Soft-bayes:
Prod for mixtures of experts with log-loss. In Proceedings of
the 28th International Conference on Algorithmic Learning
Theory, volume 76 of Proceedings of Machine Learning
Research, 372–399. Kyoto University, Kyoto, Japan: PMLR.
Racanière, S.; Weber, T.; Reichert, D.; Buesing, L.; Guez,
A.; Jimenez Rezende, D.; Puigdomènech Badia, A.; Vinyals,
O.; Heess, N.; Li, Y.; Pascanu, R.; Battaglia, P.; Hassabis, D.;
Silver, D.; and Wierstra, D. 2017. Imagination-augmented
agents for deep reinforcement learning. In Advances in Neu-
ral Information Processing Systems 30. Curran Associates,
Inc. 5690–5701.
Reinefeld, A., and Marsland, T. A. 1994. Enhanced iterative-
deepening search. IEEE Transactions on Pattern Analysis
and Machine Intelligence 16(7):701–710.
Richter, S., and Westphal, M. 2010. The lama planner: Guid-
ing cost-based anytime planning with landmarks. Journal of
Artificial Intelligence Research 39(1):127–177.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of Go with deep neural networks and tree search.
Nature 529(7587):484–489.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T. P.; Simonyan, K.; and Hassabis, D. 2017.
Mastering chess and shogi by self-play with a general rein-
forcement learning algorithm. CoRR abs/1712.01815.
Solomonoff, R. J. 1984. Optimum sequential search.
Oxbridge Research.
Tieleman, T., and Hinton, G. 2012. Lecture 6.5—RmsProp:
Divide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning.
Trakhtenbrot, B. A. 1984. A survey of Russian approaches
to Perebor (brute-force searches) algorithms. Annals of the
History of Computing 6(4):384–400.
Xie, F.; Nakhost, H.; and Müller, M. 2012. Planning via
random walk-driven local search. In Proceedings of the
Twenty-Second International Conference on Automated Plan-
ning and Scheduling, 315–322.

Figure 3: Learning curves of A3C for the 4 chosen learning
rates (4e-4, 2e-4, 1e-4, 5e-5) on the Sokoban level generator.

Network architecture and learning protocol
The network takes as input a 10x10x4 grid where the last
dimension is for a binary encoding of the different attributes
(wall, man, goal, box), which is passed through 2 convolu-
tional layers (4× 4 with 64 channels, followed by 3× 3 with
64 channels as well), followed by a fully connected layer
of 512 ReLU units. The output layer provides logits for the
4 actions (up, down, left, right). Training is performed us-
ing A3C (Mnih et al. 2016) with a reward function giving
a reward of -0.1 per step, +1 per box on a goal and -1 for
the converse action, and +10 for solving the level (all boxes
on goals), with a discount factor of 0.99; the optimizer used
is RMSProp (Tieleman and Hinton 2012) (no momentum,
epsilon 0.1, decay 0.99), with entropy regularization of 0.005.
During training, at each episode, the learner performs a single
trajectory of length 100 (like multiTS(1, 100)), receives the
corresponding rewards, then moves on to the next episode. A
single level is (very likely) never seen twice during training.
We take the best performing network, which solves around
65% of the levels when sampling a single sequence of actions.
The network is trained for 3.5e9 steps (node expansions),
which can seem to be a lot, however notice that this is equiv-
alent to fully searching a single level of Sokoban (without
state cuts) uniformly with 4 actions up to depth 16 (given that
solutions are usually of depth more than 30). The learning
process was repeated for 4 learning rates (4e-4, 2e-4, 1e-4,
5e-5) (see Fig. 3).

Another universal restarting strategy for Las
Vegas programs

We use the sequence5 of runtimes f(n) := A6519(n):

1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16 1 2 1. . .

For all n ∈ N1 : f(n) :=

{
1 if n is odd,
2f(n/2) o.w.

It has the ‘fractal’ property that f(k2n) = 2nf(k) (since
f(k2n) = 2f(k2n−1) = . . . = 2nf(k20)), for k ∈ N1 and
n ∈ N0, and it follows that f(2n) = 2n and f(k2n) ≥ 2n.

5https://oeis.org/A006519.

At iteration n, the Las Vegas program is run for f(n)
steps. For all t > 0, if f(n) ≥ t, then it has a probability
at least q(t) of halting, otherwise it does not halt and is
forcibly stopped after f(n) computations steps. Let t̂ :=
2dlog2 te be the smallest power of 2 greater than or equal
to t. Then Lemma 8 below tells us that for c < t̂ we have
that f(kt̂ + c) = f(c) ≤ t̂/2 < t, that is, between two
consecutive factors of t̂, f(n) < t.

Let phalt(n) denote the probability that the algorithm halts
exactly at the nth run, and take 1 ≤ c < t̂ and k ≥ 0, then the
expected number of computation steps L (sum of the lengths
of the runs) before halting is given by:

Luniv(p) :=

∞∑
n=1

[t phalt(n) + (1− phalt(n))f(n)]

n−1∏
j=1

(1− phalt(j))︸ ︷︷ ︸
probability of

not halting before run n

.

where phalt(n) = 0 when f(n) < t, and phalt(n) = q(t)
otherwise.

We restate Theorem 5 more precisely:
Theorem 7. For all distributions p over halting times, the
expected runtime of the universal restarting strategy based
on A6519 is bounded by

Luniv(p) ≤ min
t
t+

t

q(t)

(
log2

t

q(t)
+ 6.1

)
,

where q is the cumulative distribution of p.

Proof of Theorems 5 and 7. At step n, if k is the number of
past runs where f(m) ≥ t̂ (with m < n), then

∏n−1
j=1 (1 −

phalt(j)) = (1−q(t))k then with 1 ≤ c < t̂ and γ := 1−q(t):

Luniv(p) =

∞∑
n=0

{
γkf(n) if n = kt̂+ c,

γkpt+ γk+1f(n) if n = kt̂+ t̂ ,

=

∞∑
n=0

{
γkf(c) if n = kt̂+ c,

γkpt+ γk+1t̂f(k + 1) if n = kt̂+ t̂ .

where we used f((k + 1)t̂) = t̂f(k + 1) (remembering that
t̂ is a power of 2) and Lemma 8 for f(kt̂+ c) = f(c). Since
f(n) = f(c) < t when n = kt̂ + c, we can decompose
Luniv(p) into the steps where f(n) < t and the rest:

Luniv(p) = L< + L≥ ,

L< :=

∞∑
k=0

γk
t̂−1∑
c=1

f(c) =
1

1− γ

t̂−1∑
c=1

f(c) =
t̂

2q(t)
log2 t̂ ,

L≥ :=

∞∑
k=0

γk(1− γ)t+ γk+1t̂f(k + 1)

= t+ t̂

∞∑
k=1

γkf(k)

≤ t+ t̂

q(t̂)

(
1

e
+

1

ln 2
+

1

2
log2 ln 16 +

1

2
log2

1

q(t̂)

)

where we used Lemma 9 for L< and Lemma 13 on the last
line with γ = 1− q(t). Finally, since t̂ = 2dlog2 te ≤ 2t and
q(t̂) ≥ q(t) and dlog2 te ≤ log2 t+ 1:

L ≤ t+ t

q(t)

(
log2 t+ 1 +

2

e
+

2

ln 2
+

log2 ln 16 + log2
1

q(t)

)
≤ t+ t

q(t)

(
log2

t

q(t)
+ 6.1

)
which proves the result.

Lemma 8. For f =A6519, with k ∈ N0, n ∈ N0, a ∈
N1, b ∈ N0 and a2b < 2n, and with a odd, then

f(k2n + a2b) = f(a2b) = 2b .

Proof. Since a is odd, then so is k2n−b + a, and so f(k2n +
a2b) = f(2b(k2n−b + a)) = 2bf(k2n−b + a) = 2b.

Hence, for all numbers between two adjacent factors of 2n,
f(k2n + c) = f(c) ≤ 2n−1.
Lemma 9. For n ∈ N1 and f =A6519,

2n−1∑
c=1

f(c) = n2n−1.

Proof. If n ≥ 1 and using Lemma 8 again at 2n−1:

2n−1∑
c=1

f(c) =

2n−1−1∑
c=1

f(c) + f(2n−1) +

2n−1∑
c=2n−1+1

f(c)

= 2n−1 + 2

2n−1−1∑
c=1

f(c)

= . . . = 202n−1 + 212n−2 + . . .+ 2n−120 + 2n
20−1∑
c=1

f(c)

= n2n−1 .

Lemma 10. Let f =A6519, then for k ∈ N1, n ∈ N0, c ∈
N0:

f(k) = 2n ⇔ k = (2c+ 1)2n .

Proof. Since any number k can be uniquely written in the
form k = (2c+1)2a, and f((2c+1)2a) = 2af(2c+1) = 2a

with a ∈ N0, then f(k) = 2n ⇔ a = n.

Lemma 11. For γ ∈ [0, 1),
∞∑
n=0

2nγ2
n

≤ 1

ln 1
γ

(
1

e
+

γ

ln 2

)
.

Proof. Let h(x) := 2xγ2
x

for x ∈ R, then h′(x) =
ln(2)2xγ2

x

(2x ln γ+1) where h′(x0) = 0 for the unique x0
such that 2x0 = 1

ln 1
γ

and since ln γ < 0, we have that h′(x)

is positive for x < x0 and negative for x > x0. Thus h is
unimodal. Furthermore, since h(x) is positive and thus the
sum can be upper bounded by the integral of the continuous
function plus its maximum:

∞∑
n=0

h(n) ≤
∫ ∞
0

h(x)dx+max
x

h(x)

max
x

h(x) = h(x0) =
1

ln 1
γ

1

e
,∫ ∞

0

2xγ2
x

dx =
1

ln 2

∫ ∞
0

2x ln 2γ2
x

dx =
1

ln 2

∫ ∞
1

γydy

=
γ

ln 2 ln 1
γ

,

where we used integration by substitution. Adding the two
terms finishes the proof.

Lemma 12. For γ ∈ [0, 1) and a ≥ 1:

∞∑
n=0

γ2
n

≤ γ

⌈
log2

1

log2
1
γ

⌉
+ 1

≤ log2
1

ln 1
γ

+ log2 ln 16 .

Proof. Let

N := min
{
n ∈ N0 : γ2

N

≤ 1
2

}
=

⌈
log2

1

log2
1
γ

⌉
,

then

∞∑
n=0

γ2
n

=

N−1∑
n=0

γ2
n

+

∞∑
n=N

γ2
n

≤ Nγ +

∞∑
n=0

(
γ2

N
)2n

≤ Nγ +
∞∑
n=0

2−2
n

≤ Nγ + 1

≤

⌈
log2

1

log2
1
γ

⌉
+ 1

≤ log2
1

log2
1
γ

+ 2 .

Extracting log2 ln 2 finishes the proof.

Lemma 13. Let f =A6519 and γ ∈ [0, 1). Then

∞∑
k=1

γkf(k) ≤

1

1− γ

(
1

e
+

1

ln 2
+

1

2
log2 ln 16 +

1

2
log2

1

1− γ

)
.

Proof. Since f(n) is a power of 2 for all n ∈ N1, we regroup
the runs by powers of 2:
∞∑
k=1

γkf(k) =

∞∑
n=0

2n
∞∑
k=1

γkJf(k) = 2nK

=

∞∑
n=0

2n
∞∑
c=0

γ(2c+1)2n (Lemma 10)

=

∞∑
n=0

2nγ2
n
∞∑
c=0

(
γ2

n+1
)c

=

∞∑
n=0

2nγ2
n 1

1− γ2n+1

≤
∞∑
n=0

2nγ2
n

(
1 +

γ

2n+1(1− γ)

)
(Lemma 14)

=

∞∑
n=0

2nγ2
n

+
1

2

γ

1− γ

∞∑
n=0

γ2
n

≤ 1

1− γ

[
1

e
+

γ

ln 2
+
γ

2
+
γ2

2

[
log2 ln 4 + log2

1

1− γ

]]
≤ 1

1− γ

[
1

e
+

1

ln 2
+

1

2
log2 ln 16 +

1

2
log2

1

1− γ

]
where we used Lemma 11 and Lemma 12 on the second to
last line together with ln 1

γ ≥ 1− γ.

Lemma 14. For γ ∈ [0, 1) and a ≥ 1:

1

1− γa
≤ 1 +

1

a

γ

1− γ
.

Proof. For ε > 0 and a ≥ 1, it can be shown that (1+ ε)a ≥
1 + aε. Then, taking γ := 1

1+ε :

(1 + ε)a ≥ 1 + aε

⇔ (1 + ε)a − 1 ≥ a((1 + ε)− 1)

⇔ 1

(1 + ε)a − 1
≤ 1

a((1 + ε)− 1)

⇔ 1

γ−a − 1
≤ 1

a(γ−1 − 1)

⇔ γa

1− γa
≤ γ

a(1− γ)

⇔ 1

1− γa
≤ 1 +

1

a

γ

1− γ
,

which proves the result.

