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Abstract

Deep reinforcement learning (RL) has shown impressive re-
sults in a variety of domains, learning directly from high-
dimensional sensory streams. However, when neural net-
works are trained in a fixed environment, such as a single
level in a video game, they will usually overfit and fail to
generalize to new levels. When RL models overfit, even slight
modifications to the environment can result in poor agent per-
formance. In this paper, we explore how procedurally gener-
ated levels during training increase generality. We show that
for some games procedural level generation enables gener-
alization to new levels within the same distribution. Addi-
tionally, it is possible to achieve better performance with less
data by manipulating the difficulty of the levels in response
to the performance of the agent. The generality of the learned
behaviors is also evaluated on a set of human-designed lev-
els. Our results show that the ability to generalize to human-
designed levels highly depends on the design of the level
generators. We apply dimensionality reduction and clustering
techniques to visualize the generators’ distributions of levels
and analyze to what degree they can produce levels similar to
those designed by a human.

Introduction

Deep reinforcement learning (RL) has shown remarkable re-
sults in a variety of domains, in particular, learning policies
for video games (Justesen et al. 2017). However, there is
increasing evidence that suggests that agents easily overfit
to their particular training environment, resulting in policies
that do not generalize well to related problems or even differ-
ent instances of the same problem. Even small game modifi-
cations can often lead to dramatically reduced performance,
leading to the suspicion that these networks learn reactions
to particular situations rather than general strategies (Kansky
et al. 2017; Zhang et al. 2018).

This paper has four contributions. First, we show that
deep reinforcement learning overfits to a large degree on 2D
arcade games when trained on a fixed set of levels. These
results are important because similar setups are particularly
popular to use as benchmarks in deep reinforcement learn-
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ing research (e.g. the Arcade Learning Environment (Belle-
mare et al. 2013)). Our findings suggest that policies trained
in such settings merely memorize certain action sequences
rather than learning general strategies to solve the game.
Second, we show that it is possible to overcome such over-
fitting by introducing Procedural Content Generation (PCG)
(Shaker, Togelius, and Nelson 2016), more specifically pro-
cedurally generated levels, in the training loop. However,
we show that this can lead to overfitting on a higher level,
such as the distribution of generated levels presented dur-
ing training. This paper investigates both types of overfit-
ting and the effect of several level generators for multiple
games. Third, we introduce a particular form of PCG-based
reinforcement learning, which we call Progressive PCG,
where the difficulty of levels/tasks is increased gradually to
match the agent’s performance. While similar techniques of
increasing difficulty have been used before, they have not
been combined with a PCG-based approach in which agents
are evaluated on a completely new level every time a new
episode begins. Our approach applies constructive level gen-
eration techniques, rather than pure randomization, and this
paper studies the effect of several level generation methods.
Fourth, we analyze distributions of procedurally generated
levels using dimensionality reduction and clustering to un-
derstand whether it resembles human-designed levels.

It is important to note that the primary goal of this paper
is not to achieve strong results on human levels, but rather
to gain a deeper understanding of overfitting and general-
ization in deep RL, which is an important and neglected
area in Al research. We believe this paper makes a valuable
contribution in this regard, suggesting that a PCG-based ap-
proach could be an effective tool to study these questions
from a fresh perspective. We also see this study relevant for
robotics, where an ongoing challenge is to learn in simulated
environments to then generalize to real-world scenarios.

Related Work

Within supervised learning, it is generally accepted that ac-
curacy (and other metrics) are reported on a testing set that is



separate from the training set. In contrast, in reinforcement
learning research it is common to report results on the very
same task a model was trained on. However, several recent
learning-focused game AI competitions, such as the Visual
Doom (Kempka et al. 2016) AI Competition, The General
Video Game Al Learning Track (Liu, Perez-Lebana, and Lu-
cas ; Rodriguez Torrado et al. 2018) and the OpenAl Retro
Contest! evaluate the submitted controllers on levels that the
participants did not have access to. However, none of them
are based on procedurally generated levels. The only game
Al competition to prominently feature procedural level gen-
eration is the Mario AT Competition which did not have pro-
visions for learning agents (Togelius et al. 2013).

Randomization of objects in simulated environments has
shown to improve generality for robotic grasping to such
a degree that the robotic arm could generalize to realistic
settings as well (Tobin, Zaremba, and Abbeel 2017). Low-
fidelity texture randomization during training in a simulated
environment has allowed for autonomous indoor flight in the
real world (Sadeghi and Levine 2016). Random level gener-
ation has been applied to video games to enable generaliza-
tion of reinforcement learning agents (Beattie et al. 2016;
Graves et al. 2016; Groshev et al. 2017). Several RL ap-
proaches exist that manipulate the reward function instead
of the structure of the environment to ease learning and ul-
timately improve generality, such as Hindsight Experience
Replay (Andrychowicz et al. 2017) and Rarity of Events
(Justesen and Risi 2018).

The idea of training agents on a set of progressively harder
tasks is an old one and has been rediscovered several times
within the wider machine learning context. Within evolu-
tionary computation, this practice is known as incremental
evolution (Gomez and Miikkulainen 1997; Togelius and Lu-
cas 2006). For example, it has been shown that while evolv-
ing neural networks to drive a simulated car around a partic-
ular race track works well, the resulting network has learned
only to drive that particular track; but by gradually includ-
ing more difficult levels in the fitness evaluation, a network
can be evolved to drive many tracks well, even hard tracks
that could not be learned from scratch (Togelius and Lu-
cas 2006). Essentially the same idea has later been indepen-
dently invented as curriculum learning (Bengio et al. 2009).
Similar ideas have been formulated within a coevolutionary
framework as well (Brant and Stanley 2017).

Several machine learning algorithms also gradually scale
the difficulty of the problem. Automated curriculum learn-
ing includes intelligent sampling of training samples to op-
timize the learning progress (Graves et al. 2017). Intelligent
task selection through asymmetric self-play with two agents
can be used for unsupervised pre-training (Sukhbaatar et al.
2017). The POWERPLAY algorithm continually searches
for new tasks and new problems solvers concurrently
(Schmidhuber 2013) and in Teacher-Student Curriculum
Learning (Matiisen et al. 2017) the teacher tries to select
sub-tasks for which the slope of the learning curve of the
student is highest. Reverse curriculum generation automati-
cally generates a curriculum of start states, further and fur-
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ther away from the goal, that adapts to the agent’s perfor-
mance (Florensa et al. 2017).

A protocol for training reinforcement learning algorithms
and evaluate generalization and overfitting, by having large
training and test sets, was proposed in (Zhang et al. 2018).
Their experiments show that training on thousands of levels
in a simple video game enables the agent to generalize to
unseen levels. Our (contemporaneous) work here differs by
implementing an adaptive difficulty progression along with
near endless content generation. By testing on several more
complex games we also explore what types of problems that
agents are able to generalize.

There has also been some work where a single network
has been trained to play multiple games simultaneously,
such as the IMPALA system (Espeholt et al. 2018). In that
work, the same games were used for training and testing, and
it is in principle possible that the network simply learned in-
dividual behaviors for all of these games within the shared
model.

General Video Game AI Framework

We are building on the General Video Game Al frame-
work (GVG-AI) which is a flexible framework designed to
facilitate the advance of general Al through video game
playing (Perez-Liebana et al. 2016). There are currently
over 160 games written for GVG-AI using which are spec-
ified using the declarative video game description language
(VGDL) (Schaul 2013), originally proposed in (Ebner et al.
2013). The game definition specifies objects in the game and
interaction rules such as rewards and effects of collisions. A
level is defined as an ASCII grid where each character repre-
sents an object. This allows for quick development of games
and levels making the framework ideal for research purposes
(Perez-Liebana et al. 2018).

The GVGAI framework has been integrated with the
OpenAl Gym environment (Rodriguez Torrado et al. 2018)
which provides a unified RL interface across several differ-
ent environments (Brockman et al. 2016) as well as state-of-
the-art RL implementations (Dhariwal et al. 2017). While
GVG-ALI originally provides a forward model that allows
agents to use search algorithms, the GVG-AI Gym only pro-
vides the pixels of each frame, the incremental reward, and
whether the game is won or lost.

Parameterized Level Generator

For this paper, constructive level generators are built for sev-
eral games in GVG-AI: Boulderdash, Frogs, Solarfox and
Zelda. These games were selected as they can be considered
hard; most of the GVG-AI tree search agents do not perform
well and can thus be considered hard (Bontrager et al. 2016).
Constructive level generators (Shaker, Togelius, and Nelson
2016) are widely used in game development because they
are relatively fast and easy to debug. The constructive level
generators incorporate game knowledge during the genera-
tion process to make sure the output level is directly playable
without testing. Our generators are designed after analyzing
the core components in the human-designed levels for each
game. All the generators are parameterized using maximum
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Figure 1: Procedurally generated levels for Solarfox, Zelda, Frogs, and Boulderdash with various difficulty between 0 and 1.

Human-designed levels are shown for each game as well.

width, maximum height, and a difficulty parameter. The gen-
erators are handmade in this work to remove the variability
of general level generators (Khalifa et al. 2016) and allow a
better analysis of training on procedurally generated levels.

Boulderdash Level Generator: This game is a GVG-AI
port of “Boulder Dash” (First Star Software, 1984). Here
the player tries to collect at least ten gems and then go to
the exit door while avoiding falling boulders and attacking
enemies. The level generation in Boulderdash works as fol-
lows: (1) Generate the layout of the map using Cellular Au-
tomata (Johnson, Yannakakis, and Togelius 2010). (2) Add
the player to the map at a random location. (3) Add the exit
door at a random location away from the player. (4) Add at
least ten gems to the map at random locations. (5) Add ene-
mies to the map at random locations in a similar manner to
the third step.

Frogs Level Generator: Frogs is a GVG-AI port of
“Frogger” (Konami, 1981). In Frogs, the player tries to move
upwards towards the goal without getting killed either by
drowning in water or by getting run over by a car. The level
generation in Frogs follow these steps: (1) Add the player at
the lowest empty row in the level. (2) Add the goal at the
highest row in the level. (3) Assign the intermediate rows ei-
ther as roads, water, or forest. (4) Add cars to the roads and
wood logs to water.

Solarfox Level Generator: Solarfox is a GVG-AI port of
“Solar Fox” (Midway Games, 1981).In Solarfox, the player

is always moving in one of the four directions (North, South,
East, and West). The player tries to collect all the gems in the
level while avoiding hitting the borders or the enemy bullets
coming either from the north or the south. The level genera-
tion for Solarfox follow these steps: (1) Add the player in the
middle of the map. (2) Add some gems either in the upper
half, left half, or upper left quarter. (3) Replicate the same
pattern of gems on the remaining parts of the map.

Zelda Level Generator: Zelda is a GVG-AI port of
the dungeon system in “The Legend of Zelda” (Nintendo,
1986). In Zelda, the goal is to grab a key and exit through
a door without getting killed by enemies. The player can
use their sword to kill enemies for higher scores. The level
generation in Zelda works as follows: (1) Generate the map
layout as a maze using Prim’s Algorithm (Buck 2015). (2)
Remove some of the solid walls in the maze at random loca-
tions. (3) Add the player to a random empty tile. (4) Add the
key and exit door at random locations far from the player.
(5) Add enemies in the maze at random locations far away
from the player.

We can control the difficulty of the generators using a dif-
ficulty parameter in [0;1] passed to the generator during the
generation process. Figure 1 shows the effect of the diffi-
culty parameter in the four games. Increasing the difficulty
has three effects. First, the active level size increases (except
in Zelda and Solarfox where the level size is fixed), which
is the area in the level where the player can move through.



Second, the number of objects that can kill the player and/or
the number of objects that the player can collect is increased.
Third, the layout of the level gets more complex to navigate.
The level generator search space is extremely big around 108
at low difficulty to 1024 at high difficulties. Difficult lev-
els have more possible configurations as they typically have
more elements.

Procedural Level Generation for Deep RL

In a supervised learning setting, generality is obtained by
training a model on a large dataset, typically with thou-
sands of examples. Similarly, the hypothesis in this paper is
that RL algorithms should achieve generality if many vari-
ations of the environments are used during training, rather
than just one. This paper presents a novel RL framework
wherein a new level is generated whenever a new episode
begins, which allows us to algorithmically design the new
level to match the agent’s current performance. This frame-
work also enables the use of search-based PCG techniques,
that e.g. learn from existing level distributions (Volz et al.
2018), which remove the dependency on domain knowledge.

When the learning algorithm is presented with new levels
continuously during training, it must learn general strategies
in the game to improve. Learning a policy this way is more
difficult than learning one for just a single level and it may
be infeasible if the game rules and/or generated levels have
sparse rewards. To ease the learning, the difficulty of the
generated levels is controlled by our learning algorithm. In
this way, the level generator will initially create easy levels
and progressively increase the difficulty as the agent learns.

Our proposed method, Progressive PCG (PPCG), uses a
level generator with a difficulty setting between 0 and 1. The
difficulty of levels is never measured. Instead, the difficulty
setting is only used as input to level generator. We imple-
mented a simple control mechanism where levels initially
are requested with difficulty 0. If the agent wins an episode,
the difficulty will be incremented such that future levels dur-
ing training are harder. The difficulty is increased by « for
a win and decreased by the same amount for a loss. In our
experiments, we used o = 0.01. For distributed learning al-
gorithms, the difficulty setting is shared across all processes
such that the outcome of all episodes influences the diffi-
culty of future training levels. We compare PPCG to a sim-
pler method, also using procedurally generated levels, but
with a constant difficulty level. We refer to this approach as
PCG X, where X is the difficulty level.

Experiments

To evaluate our approach, we employ the reinforcement
learning algorithm Advantage Actor-Critic (A2C) (Mnih et
al. 2016). We use the implementation of A2C from the Open
Al Baselines and run it on the GVG-AI Gym framework.
The neural networks in this paper have the same architec-
ture originally used from Mnih et al. (Mnih et al. 2016) with
three convolutional layers and a single fully-connected layer.
The output consists of both a policy and value output in con-
trast to DQN. A2C is using 12 parallel workers, a step size
tmaxz = D, no frame skipping as in (Rodriguez Torrado et al.

2018), and a constant learning rate of 0.007 with the RMS
optimizer (Ruder 2016). The code for our experiments will
be made available online?.

We compare four different training approaches in Zelda.
Lv X: Training level is a single human-designed level where
X denotes which of the five human-designed levels. Lv 0-3:
Several human-designed levels (level O, 1, 2, and 3) which
are sampled randomly during training. PCG X: Procedu-
rally generated training levels with a constant difficulty X.
Progressive PCG (PPCG): procedurally generated training
levels where the difficulty is adjusted to the performance of
the agent.

Each training setting was repeated four times and tested
on two sets of 30 pre-generated levels with either difficulty
0.5 and 1 as well as the five human-designed levels. The
training plots on Figure 2 and the test results in Table 1 are
averaged across the four trained models where each model
was tested 30 times on each test setup (thus a total of 120
episodes per training setup). All four training approaches
were tested on Zelda. Only PCG and PPCG were tested on
Solarfox, Frogs, and Boulderdash. The trained agents are
also compared to an agent taking uniformly random actions.

Results
Training on a few Human-designed Levels

Policies trained on just one level in Zelda (Lv 0 and Lv 4
in Table 1) reach high scores on the training level but has
poor performance on all test levels; human-designed and
procedurally generated. It is clear that these are prone to
memorization and cannot adapt well to play new levels. The
scores on the training levels are close to the maximum scores
achievable while the scores on the test levels are lower
than the random policy, a clear indication of overfitting
in reinforcement learning. Policies trained on four human-
designed levels in Zelda also achieve high scores on all four
training levels. The testing scores are marginally higher than
when trained on a single level, on both the human-designed
level 4 and the PCG levels.

Training on Procedurally Generated Levels

Agents trained on procedurally generated levels with a fixed
difficulty learned a general behavior within the distribution
of procedurally generated levels, with mediocre scores in
Zelda, Solarfox, and Boulderdash, while in Frogs it never
progressed at all.

It has previously been shown that DQN and A2C fail to
learn anything on just one level in Frogs using using 1 mil-
lion training steps (Rodriguez Torrado et al. 2018). While
PCG 1, here with 40 million steps, also fails to learn Frogs,
PPCG achieves a score of 0.57 (57% win rate) in the test
set of procedurally generated levels with difficulty 1 (com-
parable to human levels in difficulty - see Figure 1). For
Zelda, PCG 1 was able to achieve strong scores while PPCG
is slightly better. Interestingly, for the two cases where
PPCG is able to reach difficulty 1 during training (Frogs
and Zelda), it produces better results than PCG 1 on PCG

https://github.com/njustesen/a2c_gvgai
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PCG 1 for Solarfox.

Zelda

Training |{PCG0.5 PCG1 LvO Lvl Lv2 Lv3 Lv4
Max. 4.40 6.87 8.00 8.00 8.00 10.00 8.00
Random 0.38 022 026 0.17 -0.11 -0.07 0.18
60M steps:

Level 0 0.28 0.51 697 -045 -0.53 0.07 -0.58
Level 4 0.56 0.07 -0.51 099 0.04 -035 593
Level 0-3 1.98 237 695 7.17 720 8.17 191
PCG 0.5 3.45 400 221 228 092 227 0.15
PCG 1 0.27 356 240 137 149 2.88 -0.62
PPCG 3.44 428 267 335 243 1.89 0.96
100M steps:

PCG 1 3.05 438 249 154 1.18 2.04 -0.29
PPCG 3.82 451 271 374 284 190 0.88
Solarfox*

Max. 30.83  51.83 32.00 32.00 34.00 70.00 62.00
Random -3.68 -455 -549 -480, -541 2.03 1.13

40M steps:

PCG 1 20.70  32.43 22.00 21.83 26.00 43.96 28.16
PPCG 16.08 21.40 16.87 10.26 12.02 27.37 20.00
Frogs
Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Random 0.01 0.00 0.00 0.00 0.00 0.00 0.00

40M steps:

PCG 1 0.01 0.00 0.00 0.00 0.00 0.00 0.00
PPCG 0.81 0.57 0.00 0.00 0.00 0.00 0.00
Boulderdash
Max. 31.50 29.80 48.00 52.00 58.00 48.00 44.00
Random 6.29 371 085 258 35 0.65 266

60M steps:
PCG 1 14.63 832 539 1028 5.85 5.08 8.27
PPCG 11.78 486 3.44 098 0.68 041 3.32

Table 1: Test results of A2C using several training settings,
including; a single human-designed level (Level 0 and Level
4), several human-designed levels (Level 0-3), procedurally
generated leves with a fixed difficulty (PCG 0.5 and PCG
1), and PPCG that progressively adapts the difficulty of the
levels to match the agent’s performance. Random refers to
results of an agent taking uniformly random actions and
Max. shows the maximum possible score. Scores are in red
if training level are the same as the test level. The best scores
for a game, that is not marked red, are in bold. *Only three
repetitions of PPCG and one of PCG 1 were made for Solar-
fox so far.

1 levels. As PPCG never requests any difficult levels during
training, this is expected. In Boulderdash, the agents trained
with PCG 1 reaches decent scores (8.34 on average) on lev-
els with difficulty 1. PPCG learns to achieve high scores dur-
ing training but it fails to win the game when the difficulty
is around 0.2.

Generalization on Human-Designed Levels

From the results, it is clear that by introducing procedurally
generated levels we can obtain behaviors that can general-
ize to unseen levels within the training distribution. It is,
however, interesting whether they also generalize to the five
human-designed levels in GVG-AL

In Zelda, the performance of PCG and PPCG in human-
designed levels are descent but lower than in the procedu-
rally generated levels. In Frogs, PCG and PPCG are unable
to win any of the human-designed levels indicating a clear
discrepancy between the two level distributions. In Boulder-
dash, PCG 1 achieved on average 5.08-10.28 points (out
of 20) in the five human-designed levels compared to 8.32—
14.63 on the procedurally generated levels. PPCG perform
worse since it never reached a difficulty level during train-
ing similar to the human-designed levels. Similarly, in So-
larfox, PCG 1 achieved on average a higher score on the
five human-designed levels compared to PPCG agents as the
PPCG agents didn’t reach difficulty of 1.0 during training.
PCG 1, however, shows remarkable generalization with no
clear drop in performance.

Qualitative Analysis of Agent Replays

In Zelda, it is clear that PPCG has learned to reliably strike
down and avoid enemies but is only rarely able to collect the
key and exit through the door. Whether this is due to the dif-
ficulties of navigating in tricky mazes or lack of motivation
towards the key and door is unknown. One of the assump-
tions for the difficulty to improve in Zelda, is that the agent
relies on enemies’ movement to reach new locations where
the key or/and the door is sometimes close by and easy to
reach. In Solarfox, PCG 1 has learned to effectively pick up
the diamonds and avoid the fireballs, occasionally getting hit
while trying to get away from them. This behavior is remark-
ably human-like. Sometimes the agent is able to win the
human-designed levels which is quite impressive. As PPCG



perfomance is lacking in the hard levels we notice that it jig-
gles around the starting location to collect nearby diamonds.
We think that behavior arose because the easy procedurally
generated levels have diamonds near the starting location. In
Frogs, PPCG is able to navigate towards goal. Sometimes
it looses when crossing the water when only few logs are
available. We suspect that navigation in this game is learned
more easily than in other games as the goal in Frogs is al-
ways in the top and thus moving up is a simple heuristic to
learn. In Boulderdash, PCG 1 learned basic skills in fighting
and picking up nearby diamonds, also under boulders, while
it does not seem to be capable of long-term planning. It often
fails to fight and move boulders and thus dies rather quickly
in most level. Since it often dies from boulders and enemies,
it can explain why PPCG never reached a difficulty higher
than 0.2. It simply gets killed early when boulders and ene-
mies are introduced.

Exploring the Distribution of Generated
Levels

The learned policies ability to generalize to human-designed
levels highly depends on the game and the design of the
level generators. We do not expect agents to play well on
levels that are dissimilar from their training distribution.
To investigate the distribution of the procedurally generated
levels, and how the structure of these levels correlate with
human-designed levels, we have generated 1000 levels for
each game with difficulty 1. The high-dimensional struc-
ture of each level have been compressed to two dimensions
using principal component analysis (PCA), whereafter the
transformed points are clustered using density-based spa-
tial clustering of applications with noise (DBSCAN). The
transformed space of levels are visualized in Figure 3. For
PCA to work on GVG-AlI levels, they have been transformed
into a 3D array of shape (tile_type, height, width) containing
0’s and 1’s and then reshaped into a 1D array. The human-
designed levels were included in both the transformation and
clustering processes.

The generated levels for Solarfox are clustered in three
wide groups; (1) levels with only green diamonds, (2) lev-
els with both green and blue diamonds, and (3) levels with
only blue diamonds. None of the human-designed levels use
both types of diamonds and thus only belong to two of the
clusters. For Zelda, only one cluster is discovered without
outliers. Interestingly, PCG 1 and PPCG generalizes best to
the human-designed levels that are closest to the centroid
(level 0 and 1) and worst to levels further from the centroid
(level 2 and 4). The generated levels in Frogs have been clus-
tered into 19 groups. This is due to the high structural effect
of roads and rivers that goes across the level. It is notice-
able how level 4 is the most distant outlier. This is because
level 4 has a river on the starting row which our generator
is constrained not to create. Level 0-3 are near the same
small cluster while the generated levels are spread across
many isolated clusters. It is not exactly clear why PCG 1 and
PPCQG fail to play on all the human-designed Frogs levels but
the structure of the level space is remarkably different from
the other games. In Boulderdash, similarly to Zelda, only

one cluster emerges, but all human-designed levels are dis-
tant outliers. This clustering is a result of the fixed amount
of open space in the human-designed levels with padding of
only one tile; the generated levels are more varied and cave-
like.

Discussion

The results of our experiments affirm the original concern
with the way reinforcement learning research is often eval-
uated and reported. When it is reported that an agent has
learned to play a game, it may simply mean that the policy
has found actions for a small subspace of the possible obser-
vations the game can offer. This boils down to the network
mapping seen observations in this subspace to actions with-
out learning general concepts of the game. Table 1 shows
this with the huge disparity between the red and black num-
bers; the difference in performance on the training levels and
test levels. If the goal of the agent is to learn how to play a
game, then this work shows that it must be evaluated in sev-
eral test environments.

Our results demonstrate the effectiveness of using proce-
durally generated levels in the training loop while it also
presents us with new challenges. For PPCG, there is a design
challenge in how to scale the complexity of the environment
to smoothen the learning curve. In Frogs, it was very effec-
tive to apply padding to easy levels, creating smaller levels
in the beginning, while it was not sufficient for Boulderdash.
Another challenge is how to ensure that the distribution of
procedurally generated levels match another distribution, in
this case human-designed levels. We have provided a tool
using dimensionality reduction and clustering which can be
used to improve the design of constructive level generators
or perhaps to guide search-based level generators in future
work. While our results vary across the four games, we have
the opportunity to analyze when our approach works and
when it fails. We believe that search-based PCG is an inter-
esting area for future work that could ultimately lead to RL
agents with more general policies. We believe that this study
is also relevant for robotics; learning to generalize from sim-
ulation to real-world scenarios where pure randomization of
the environment is insufficient.

Conclusion

We explored how policies learned with deep reinforcement
learning generalize to levels that were not used during train-
ing. The results demonstrate that agents trained on just one
or a handful of levels often fail to generalize to new lev-
els. This paper presented a new approach that incorporates
a procedural level generator into the reinforcement learn-
ing framework, in which a new level is generated for each
episode. Training on a large set of levels requires much more
training time compared to training on just one level. Our
experiments show that training on hard procedurally gen-
erated levels can be infeasible in some games. Our Progres-
sive PCG (PPCG) approach increases the difficulty of the
generated levels when the agent wins during training and
decreases the difficulty when it loses. This technique was
able to achieve a win rate of 57%, compared to 1% with-



(a) Zelda (b) Solarfox

(d) Boulderdash

Figure 3: Visualization of the level distribution and how they correlate to human-designed levels (white circles). Levels were
reduced to two dimensions using PCA and clustered using DBSCAN (e = 0.5 and a minimum of 10 samples per cluster).

Outliers are black and centroids are larger.

out, in difficult Frogs levels. Additionally, in Zelda this ap-
proach was superior across procedurally generated levels
and human-designed levels. In Solarfox and Boulderdash,
the level difficulty of PPCG never reached the maximum
during training and here procedurally generated levels with
a fixed difficulty setting was best. This results of this paper
also highlights the important challenge of ensuring that the
training distribution resembles test distributions. We have
provided a tool that can assist with the second challenge,
that uses dimensionality reduction and clustering to visual-
ize the difference between two distributions of video game
levels.
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