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Abstract

Reinforcement learning methods require careful design in-
volving a reward function to obtain the desired action policy
for a given task. In the absence of hand-crafted reward func-
tions, prior work on the topic has proposed several methods
for reward estimation by using expert state trajectories and ac-
tion pairs. However, there are cases where complete or good
action information cannot be obtained from expert demon-
strations. We propose a novel reinforcement learning method
in which the agent learns an internal model of observation on
the basis of expert-demonstrated state trajectories to estimate
rewards without having to completely learn the dynamics of
the external environment from state-action pairs. The internal
model is obtained in the form of a predictive model for the
given expert state distribution. During reinforcement learn-
ing, the agent predicts the reward as a function of the differ-
ence between the actual state and the state predicted by the in-
ternal model. We conducted multiple experiments in environ-
ments of varying complexity, including the Super Mario Bros
and Flappy Bird games. We show our method successfully
trains good policies directly from expert game-play videos.

Introduction
Reinforcement learning (RL) (Sutton and Barto 1998) en-
ables an agent to learn the desired behavior required to ac-
complish a given objective, such that the expected return
or reward for the agent is maximized over time. Typically,
a scalar reward signal is used to guide the agent’s behav-
ior so that the agent learns a control policy that maximizes
the cumulative scalar reward over trajectories. This type of
learning is referred to as model-free RL if the agent does
not have an apriori model or knowledge of the dynamics of
the environment it is acting in. Some notable breakthroughs
among the many recent research efforts that incorporate
deep models include the deep Q-network (DQN) (Mnih et
al. 2015), which approximated a Q-value function used as a
deep neural network and trained agents to play Atari games
with discrete control, the deep deterministic policy gradi-
ent (DDPG) (Lillicrap et al. 2016), which successfully ap-
plied deep RL for continuous control agents, and the trust
region policy optimization (TRPO) (Schulman et al. 2015),
which formulated a method for optimizing control policies
with guaranteed monotonic improvement.

∗This work originated while working at IBM Research

In most RL methods, it is critical to choose a well-
designed reward function to successfully ensure that the
agent learns a good action policy for performing the task.
Moreover, there are cases in which the reward function is
very sparse or may not be directly available. Humans can
often imitate the behavior of their instructors and estimate
which actions or environmental states are good for the even-
tual accomplishment of a task without being provided with
a continual reward. For example, young adults initially learn
how to write letters by imitating demonstrations provided
by their teachers or other adults (experts). Further skills
get developed on the basis of exploration around this ini-
tial grounding provided by the demonstrations. Taking in-
spiration from such scenarios, various methods have been
proposed, which are collectively known as imitation learn-
ing (Ho and Ermon 2016; Duan et al. 2017) or learning from
demonstration (Schaal 1997). Inverse reinforcement learn-
ing (Ng and Russell 2000; Abbeel and Ng 2004; Wulfmeier,
Ondruska, and Posner 2015), behavior cloning (Pomerleau
1991), and curiosity-based exploration (Pathak et al. 2017)
are also examples of research in this field. Typically, in all
these formulations, expert demonstrations are provided as
input.

The majority of such prior work assumes that
the demonstrations contain both states and actions
{(si0,ai0), ..., (sit,ait)} and that these can be used to solve
the problem of having only a sparse reward or a complete
lack thereof. However, there are many cases in real-world
environments in which such detailed action information is
not readily available. For example, a typical schoolteacher
does not tell students the exact amount of force to apply to
each of their fingers while they are learning how to write.

As such, in this work, as our primary contribution, we pro-
pose a reinforcement learning method in which the agent
learns an internal predictive model that is trained on the
external environment from state-only trajectories by expert
demonstrations. This model is not trained on both the state
and action pairs. Hence, during each RL step, it estimates an
expected reward value on the basis of the similarity between
the actual and predicted state values by the internal model.
Therefore, the agent must learn to reward known good states
and penalize unknown deviations. We formulate this internal
model as a temporal-sequence prediction model that predicts
the next state value given the current and past state values



at every time step. This paper presents experimental results
on multiple environments with varying input and output set-
tings for the internal model. In particular, we show that it
is possible to learn good policies using an internal model
trained by observing only game-playing videos, akin to the
way we as humans learn by observing others. Furthermore,
we compare the performance of our proposed method re-
garding the baselines of hand-crafted rewards, prior research
efforts, and other baseline methods for the different environ-
ments.

Related Work
In RL, an agent learns a policy π(at|st) that produces
good actions from the observation at the time. DQN (Mnih
et al. 2015) showed that a Q-value function q(st, at) can
be successfully approximated with a deep neural network.
DAQN (Kimura 2018) showed the pre-training by a gener-
ative model reduces the number of training iterations. Simi-
larly, actor and critic networks in DDPG can enable contin-
uous control, e.g., in robotic manipulation, by minimizing
the distance between the robot end-effector and the target
position. Since the success with DDPG, other methods such
as TRPO (Schulman et al. 2015) and proximal policy opti-
mization (PPO) (Schulman et al. 2017) have been proposed
as further improvements for model-free RL regarding con-
tinuous control.

Although RL enables an agent to learn an optimal pol-
icy in the absence of supervised training data, in a standard
case, it involves the difficult task of hand-crafting good re-
ward functions for each environment (Abbeel and Ng 2004).
Several approaches have been proposed to work around or
tackle this problem. One approach that does not require
hand-crafted rewards is behavior cloning based on super-
vised learning instead of RL (Pomerleau 1991). It learns the
conditional distribution of actions from given states in a su-
pervised manner. Although it has the advantage of fast con-
vergence (Duan et al. 2017) (as behavior cloning learns a
single action from states during each step), it typically re-
sults in the compounding of errors in future states.

An alternate approach, inverse reinforcement learn-
ing (IRL), was proposed (Ng and Russell 2000). In this
work, the authors tried to recover the reward function as the
best description of the given expert demonstrations from hu-
mans or expert agents using linear programming methods.
This was based on the assumption that expert demonstra-
tions are solutions to a Markov decision process (MDP) de-
fined by a hidden reward function (Ng and Russell 2000).
It demonstrated successful estimation of the reward func-
tion regarding relatively simple environments, such as a
grid world and the mountain car problem. Extending (Ng
and Russell 2000), entropy-based methods that compute a
suitable reward function by maximizing the entropy of the
expert demonstrations have been proposed (Ziebart et al.
2008). In another paper (Abbeel and Ng 2004), a method
was proposed for recovering the cost function on the basis
of expected feature matching between observed policies and
agent behavior. Furthermore, the research showed that it is
necessary for the agent to imitate the behavior of the expert.

Demonstrations have also been used for initializing the value
function (Wiewiora 2003).

Recently, there have been some studies that extended such
a framework by using deep networks as non-linear function
approximators for both the policies and the reward func-
tions (Wulfmeier, Ondruska, and Posner 2015). In another
relevant paper (Ho and Ermon 2016), the imitation learn-
ing problem was formulated as a two-player competitive
game in which a discriminator network tries to distinguish
between expert trajectories and agent-generated trajectories.
The discriminator is used as a surrogate cost function that
guides the agent’s behavior to imitate the expert’s behavior
by updating policy parameters on the basis of TRPO (Schul-
man et al. 2015). Recent related work also includes model-
based imitation learning (Baram et al. 2017) and robust im-
itation learning (Wang et al. 2017) using generative adver-
sarial networks. It can be argued that our method is similar
to the reward shaping method proposed by (Brys et al. 2015)
because both methods calculate the similarity of demonstra-
tions as a reward shaping function. However, while their pa-
per dealt only with discrete action tasks, we show a similar
approach can be applied to continuous action tasks 1. More-
over, all the above-mentioned methods rely on both state and
action information provided by expert demonstrations.

Another recent line of work aimed at learning useful poli-
cies for agents even in the absence of expert demonstrations.
In this regard, they trained an RL agent with a combina-
tion of intrinsic curiosity-based reward and hand-engineered
reward that had a continuous or very sparse scalar sig-
nal (Pathak et al. 2017). The curiosity-based reward was de-
signed to have a high value when the agent encountered un-
seen states and a low value when it was in a state similar to
the previously explored states. The paper reported good poli-
cies in games such as Super Mario Bros. and Doom, without
any expert demonstrations. Here, we also compared our pro-
posed method with the curiosity-based approach and demon-
strated better-learned behavior. However, as a limitation, our
method assumed that state demonstrations were available as
expert data.

Also, there is a work that estimated the reward from lin-
ear function (Suay et al. 2016). However, they evaluated
by a simple task; specifically, they used 27 discrete state-
variables for Mario. In contrast, our method is using the non-
linear model.

At the same time as this work, a recent paper (Torabi,
Warnell, and Stone 2018) proposed learning policies using
a behavior cloning method based on observations only. Un-
like that work, here we put primary focus on reward shaping
based on an internal model from observation data.

Proposed Method
Problem Statement
We considered a MDP consisting of states S and actions A,
where the reward signal r : S × A → R was unknown. An
agent acted in accordance with this MDP following the pol-

1Please note they used a different Mario game from the one
used in this paper.



icy, π(at|st). Here, we assumed to have knowledge of a fi-
nite set of expert state trajectories, τ = {S0, ...,Sn}, where
Si = {si0, ..., sim}. These trajectories represented joint an-
gles, raw images, or other environmental states.

Since the reward signal was unknown, our primary goal
was to find a reward signal that enabled the agent to learn
a policy, π, that could maximize the likelihood of these sets
of expert trajectories, τ . In this paper, we assumed that the
reward signal could be inferred entirely on the basis of the
information of the current and following states, r : S×S →
R. More formally, we wanted to find a reward function that
maximized the following objective:

r∗ = argmax
r

Ep(st+1|st)r(st+1|st), (1)

where r(st+1|st) is the reward function of the next state
based on the current state and p(st+1|st) is the transition
probability. We hypothesized that maximizing the likelihood
of the next step prediction in Eq. 1 would result in increasing
future rewards. This is because the likelihood was based on
the similarity of current state values with the demonstrations
obtained using the expert agent, which inherently chooses
actions that would maximize their expected future reward.
As such, we assumed the agent maximized the reward when
it took the action that changed to a similar step value with
given states from the expert.

Training the Internal Model
Let τ = {sit}i=1:M,t=1:N be the expert states obtained by
the expert agent, where M is the number of demonstration
episodes and N is the number of steps within each episode.
We trained the internal model to predict reward signals on
the basis of the expert state trajectories, τ , which in turn
were used to guide a reinforcement learning algorithm and
learn a suitable policy.

A straightforward idea (baseline) for an internal model is
to use a generative model of the state value, sit, to understand
the τ . The model trains a distribution of the state values,
from which a predicted reward can be estimated on the ba-
sis of a similarity between the reconstructed state value and
the actual experienced state value. This method limits explo-
ration to the states that have been demonstrated by experts
and enables learning a policy in a way that closely matches
that of the expert. However, the temporal order of states is
ignored or not readily accounted for, which is problematic
because the temporal order of the next state in the sequence
is important for estimating the state transition probability
function.

Therefore, our proposed method uses a recurrent neural
network (RNN)-based temporal-sequence model as an inter-
nal model that can be trained to predict the next state value
given current and previous states on the basis of the expert
trajectories. Such RNN temporal-sequence prediction mod-
els have been used successfully in the past as internal for-
ward models in the context of grammar learning and robot
behavior prediction (Bakker 2002; Dasgupta et al. 2015).
Here, we trained a deep temporal sequence prediction model
as the internal model by using the given state values, sit, and
the next state values, sit+1, from the expert demonstration

trajectories, τ . The model was trained to maximize the like-
lihood of the next state, such that the objective function for
the model was

θ∗ = argmin
θ

[
−

M∑
i=1

N∑
t=1

log p(sit+1|sit;θ)
]
, (2)

where θ∗ represents the optimal parameters of the internal
model. We also assumed the probability of the next state
given the previous state value, p(sit+1|sit;θ), to be a Gaus-
sian distribution. As such, the objective function could be
seen as minimizing the mean square error, ‖sit+1− θ(sit)‖2,
between the actual next state, sit+1, and the predicted next
state, θ(sit).

Reinforcement Learning
During the reinforcement learning, the method predicts a re-
ward value with the trained internal model. The value is esti-
mated as a function of the similarity between an actual next
state value, st+1, and the predicted next state value, θ(st),
given the current state value, st. Thus the reward function is
formulated as

rt = −ψ
(
‖st+1 − θ(st)‖

)
, (3)

where ψ is a function that reshapes the reward structure. In
this paper, we experimented with a normal linear function, a
hyperbolic tangent function, and a Gaussian function as the
ψ function. In this formulation, if the current state was sim-
ilar to the predicted state value, the estimated reward value
was high. However, if the current state was not similar to
the predicted state, the reward value was low. Moreover, as
the reward value was estimated at each time step, this ap-
proach could predict dense rewards even regarding problems
in which the original hand-crafted reward had a sparse struc-
ture.

Algorithm 1 explains the flow of the method. The RL pro-
cedure is shown as part of a generic RL pipeline and can be
implemented with most on- or off-policy RL algorithms. In
this paper, we used DDPG and DQN RL algorithms.

Experiment
We conducted experiments across a range of environments.
We prepared four different tasks with varying complexity,
namely, controlling a robot arm so that the end-effector
reaches a target position, controlling a point agent to move
to a target point while avoiding an obstacle, sending com-
mands to a bird agent for the longest flight in the Flappy Bird
video game, and controlling the Mario agent to maximize a
total travelled distance in the Super Mario Bros. video game.
Table 1 summarizes the key differences between the experi-
ments.

Reacher
We considered a two degrees of freedom (2-DoF) robot
arm in an x-y plane that has to learn to make the end-

2The parameter updates are carried out following the standard
procedure of the specific reinforcement learning (on-policy or off-
policy) algorithm.



Algorithm 1 Reinforcement Learning with Internal Model

1: procedure TRAINING DEMONSTRATIONS
2: Given trajectories τ from expert agent
3: for sit, sit+1 ∈ τ do
4: θ∗ ← argminθ

[
−
∑

i,t log p(s
i
t+1|sit;θ)

]
5: end for
6: end procedure
7: procedure REINFORCEMENT LEARNING
8: for t = 1, 2, 3, ... do
9: Observe state st

10: Execute action at, and observe state st+1
11: rt ← −ψ

(
‖st+1 − θ(st)‖

)
12: Update network 2 using (st,at, rt, st+1)
13: end for
14: end procedure

Table 1: Comparison of different environments.

Environment Input Action RL

Reacher joint angle continuous DDPG

Mover w/ obstacle pos., dist.3 continuous DDPG

Flappy Bird image, pos. discrete DQN

Super Mario Bros. image discrete A3C

effector reach a target position. The first link of the robot
was rigidly connected to the (0, 0) point, and the second
link connected to an edge of the first link. It had two joint
values: θ = (θ1, θ2), θ1 ∈ (−∞,+∞) and θ2 ∈ [−π,+π],
and the lengths of the links were 0.1 and 0.11, respectively.
The p2 is the end point of the first link, and the pee is
the end-effector position of two links. The joint values and
a target position were initialized by random values at the
initial step of each episode. Specifically, the x and y of
the target position, ptgt, were set from a random uniform
distribution of [−0.27,+0.27]. The applied continuous ac-
tion value, at, was used to control the joint angles, such
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Figure 1: Reacher
environment. Ob-
jective of agent
is to make end-
effector (green)
reach target (red).
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Figure 2: Performance of RL for
reacher. Number in brackets cor-
responds to equation number.

that θ̇ = 0.05 at. Each action value was clipped within
the range of [−1, 1]. The state vector, st, consisted of the
following variables: an absolute end position of the first
link (p2), a joint value between the first link and the sec-
ond link (θ2), velocities of the joints (θ̇1, θ̇2), and an abso-
lute target position (ptgt). We used the roboschool environ-
ment with built-in physical dynamics (Brockman et al. 2016;
OpenAI 2017) for this experiment, as shown in Figure 1. The
robot links are in blue, the green point is the end-effector,
and the red point is the target location.

We used the DDPG algorithm (Lillicrap et al. 2016) to
train the RL agent. The actor and critic-network had 400,
300 fully connected (FC) neuron layers, respectively. The
output from the final layer of the actor was passed through
a tanh activation function while others passed through the
ReLU (Nair and Hinton 2010) activation function. The ex-
ploration policy was an Ornstein-Uhlenbeck process (Uh-
lenbeck and Ornstein 1930), the size of replay memory was
1 million steps, and we used the Adam optimizer (Kingma
and Ba 2014) for the stochastic gradient updates. The num-
ber of steps for each episode was set to 400. All implemen-
tations were done using the Keras-rl (Plappert 2016) and
Keras (Chollet 2015) libraries. Here, we compared the fol-
lowing reward functions:

Hand-crafted dense reward:
rt = −‖pee − ptgt‖2 + renvt (4)

Hand-crafted sparse reward:
rt = −100 tanh(‖pee − ptgt‖2) + renvt (5)

Predictive model (PM, with state-action pair):
rt = −10 tanh(‖st+1 − θ+a(st,at)‖2) + renvt (6)

Generative model (GM, baseline):
rt = − tanh(‖st+1 − θg(st+1)‖2) + renvt (7)

Proposed method:
rt = −10 tanh(‖st+1 − θ(st)‖2) + renvt (8)

where renvt is an environment-specific reward, which is the
cost for current action, −‖at‖2. This regularization was re-
quired to find the shortest path to reach the target. The expert
demonstrations, τ , had 2000 episode trajectories by running
a trained agent. The model, θ+a, used both state-action pairs
to estimate the reward function, ‖sit+1 − θ+a(sit,ait)‖2,
where sit and ait were obtained from demonstrations. Our
proposed internal model did not require such action infor-
mation ait. The proposed method was constructed using long
short-term memory (LSTM) (Hochreiter and Schmidhuber
1997) as with the temporal sequence model. The model had
two 128-unit LSTM layers with tanh activation and a 40-
unit FC layer with ReLU activation. Furthermore, we also
compared it with a standard behavior cloning (BC) (Pomer-
leau 1991) procedure, which used the actor-network directly
trained with state-action pairs from expert demonstrations.

Figure 2 shows the performance of the agents. In all cases,
using internal-model-based rewards gave better results than

3“pos.” implies position, and “dist.” implies distance.



having sparse rewards. Moreover, the model-based learn-
ing curves started from a better initial point compared to
the dense reward curve. As observed, our proposed method
achieved the best results when compared with all the base-
line methods and also nearly achieved the results obtained in
the dense reward case. As expected, the GM failed to work
well in this complex environment. The PM model with state-
action information also performed poorly. However, in com-
parison, the BC method worked relatively well. This is not
surprising and clearly indicates that it is better to use behav-
ior cloning than reward prediction when both state and ac-
tion information are available from expert demonstrations.

Mover with Obstacle
In this task, we developed a new environment that has posi-
tion control and an obstacle. The task was to move toward a
target position without colliding with the obstacle. Figure 3
illustrates the environment setup. The initial position of the
agent, the target position, and the obstacle’s position were
initialized randomly. The state vector, st, contained the fol-
lowing variables: the agent’s absolute position (pt), the cur-
rent velocity of the agent (ṗt), the target position (ptgt), the
obstacle’s position (pobs), and the relative target and obsta-
cle location regarding the agent (pt−ptgt,pt−pobs). The
RL algorithm used was DDPG (Lillicrap et al. 2016); the
actor and critic networks had 64 and 64-unit FC layers, and
each layer had a ReLU activation function. The exploration
policy was the Ornstein-Uhlenbeck process (Uhlenbeck and
Ornstein 1930), the size of the replay memory was 500, 000
and the optimizer was Adam. The number of steps for each
episode was set to 500.

Here, we tried predicting a part of the state that is related
to a given action, thus taking the relevance into account. In
former work (Pathak et al. 2017), the authors predicted the
function of the next state, φ(st+1), rather than predicting the
actual value, st+1. In this experiment, we chose the agent
position, (pt), as the selected state value. Furthermore, we
changed the non-linear function, ψ, to a Gaussian function.
This allowed us to compare the robustness of our proposed
method when using different non-linear functions. Here, we
used the following reward functions:

Hand-crafted dense reward:
rt = −‖pt − ptgt‖2 + ‖pt − pobs‖2 (9)

Proposed method (predict next state values):

rt = exp(−‖st+1 − θ(st)‖2/2σ2
1) (10)

Proposed method (predict only next agent position):

rt = exp(−‖s′t+1 − θ′(st)‖2/2σ2
2), (11)

where s′t is the agent’s position, θ′ is an internal network
that predicts a selected state ŝ′t, σ1 is 0.005, and σ2 is 0.002.
The dense reward was composed of both the target dis-
tance cost and an obstacle distance bonus. The expert trajec-
tories, τ , contained 800 human-guided demonstration data
with only state values; therefore, behavior cloning could
not be directly applied. The internal prediction model once
again used an LSTM network that consisted of two 256-unit
LSTM layers with ReLU activations.
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Figure 3: Mover
with obstacle.
Objective of
agent (blue)
is to move to
target (red)
while avoiding
obstacle (yellow).
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Figure 4: Performance for mover
with obstacle. We tested the proposed
method under two different conditions.

Figure 4 shows the performance obtained with the dif-
ferent reward settings. As observed, the proposed internal
model learned to reach the target faster than the dense re-
ward. Using the agent’s position prediction internal model
achieved the best performance.

Flappy Bird
In this experiment, we used a re-implementation (Lau 2017)
of the “Flappy Bird” game. The objective of this game is to
make the agent pass through as many pipes as possible with-
out collision. The control is a single discrete command of
whether to flap the bird’s wings or not. The RL state value
had four consecutive gray frames (4 × 80 × 80 pixels). A
well-trained agent can play for an arbitrary number of steps;
however, we set the limit to 1,000 steps for each episode.
Each position of the pipe is random. In this case, we used the
DQN (Mnih et al. 2015) RL algorithm in which the network
had three convolutional and two FC layers. Each layer had
ReLU activation, and it used the Adam optimizer and mean-
squared loss. The size of replay memory was 2 million steps,
the batch size was 256, and all other parameters were fixed
following the original implementation (Lau 2017). The up-
date frequency of the deep network was 100 steps. Here, we
compared the following rewards:

Hand-crafted reward (the point for game):

rt =


+0.1 if alive
+1 if passes through a pipe
−1 if collides with a pipe

(12)

Proposed method (predict next bird position):

rt = exp(−‖s′t+1 − θ′(st)‖2/2σ2) , (13)

where s′t is the absolute position of the bird that can be given
from the simulator, and σ is 0.02. The absolute position was
not in the state value; however, it can be estimated by simple
image processing. The internal model, θ′, was constructed
using an LSTM network to predict the bird’s next position
given the image input. The set of expert trajectories, τ , had
only 10 episodes obtained from a trained agent available
from the Github repository (Lau 2017). In this case, we also
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compared the learned agent behavior with that obtained us-
ing a behavior cloning method.

Figure 5 clearly demonstrates that our proposed method
converges faster than hand-crafted rewards. This can be as-
cribed to the fact that the hand-crafted reward only took into
account the distance traveled, whereas our internal-model-
estimated reward provides information about which abso-
lute transitions are good. The hand-crafted reward of this
game was a big positive value when it passed the pipe, oth-
erwise it was a small positive value when the bird was alive.
This means a big positive value will be delayed even if the
bird chose a good action. Even though it is given each step,
the hand-crafted reward does not contain the detailed reward
value for each transition. In contrast, our method could esti-
mate the detailed reward by using the similarity of state in-
formation for each transition. Furthermore, our method con-
verges significantly better with fewer demonstrations than
the baseline BC method, since the reason is the number of
demonstrations was small.

Super Mario Bros.

In the final task, we considered a more difficult setting so
that we could obtain only raw state information to clarify
the benefits of the proposed method. Here, we applied our
internal-model-based reward estimator to Nintendo’s “Su-
per Mario Bros.” game and used a classic Nintendo video
game emulator (Paquette 2017) for the environment. In
this experiment, we compared our method with a curiosity-
based method (Pathak et al. 2017) using their implemen-
tation (Pathak 2017). However, we slightly modified the
game implementation to always initialize Mario at the start-
ing position rather than at a previously saved checkpoint.
The game has a discrete control where an agent (Mario) can
make 14 types of action; however, a single action was re-
peated for six consecutive frames. The state, st, consisted
of sequential input of four 42×42-pixel gray-frame images
with skipping every six frames. We used the A3C (Mnih et
al. 2016) on-policy RL algorithm to evaluate our model, and
played stage “1-1” of the game. The main objective of the
agent was to travel as far as possible. We compared the fol-

lowing rewards:

Difference of Mario’s position (dense reward):
rt = positiont − positiont−1 (14)

Difference of score (sparse reward):
rt = scoret − scoret−1 (15)

Curiosity (Pathak et al. 2017):
rt = η‖φ(st+1)− θF (φ(st),at)‖2 (16)

Proposed method (predict next frame):

rt = max(0,−‖s′t+1 − θ′(st)‖+ ζ) (17)

where positiont is Mario’s current position value, scoret is
a score value, s′t is the latest frame in st, and ζ is 0.025. Po-
sition, score, and related meta-information could be directly
obtained from the emulator. In our proposed method, we
took 15 game playing videos, each showing a single episode,
from five different expert players and provided the demon-
stration trajectories, τ . In total, τ consisted of 25 thousand
frames without any action or meta-information. We skipped
36 frames to generate sit because people cannot play as fast
as an RL agent. We used a three-dimensional convolutional
neural network (3D-CNN) (Ji et al. 2013) as the θ′ model.
The internal model, θ′, predicted the next frame image given
the continuous frames, st. The 3D-CNN network consisted
of four convolutional layers4 and one final convolutional
layer to reconstruct the image. Once again, the proposed
method required only videos to train the internal model.

Here, we changed the ψ function to a linear function to
evaluate a simple formulation of the proposed method. How-
ever, a naı̈ve reward estimate, (rt = −‖s′t+1−θ′(st)‖2+1),5
does not work for this stage of the game. The Mario with the
naı̈ve method ends up getting positive rewards even if the
agent remains stationary at the initial position (since enemy
agents do not appear if Mario does not move). Hence, we ap-
plied a threshold, ζ, value to prevent this trivial sub-optimal
outcome. ζ was calculated on the basis of the reward value
obtained by staying stationary at the initial position.

Figure 6 shows the performance with the different re-
ward functions. The graph presents the mean learning curves
across trials. As observed, the agent does not reach the goal
every time, even with the hand-crafted dense rewards 6. This
behavior was also observed in the original paper for their
reward case (Pathak et al. 2017). However, as observed in
Figure 6, our proposed method learns relatively faster than
the curiosity- and score-based reward methods. Moreover, it
was faster to obtain a good policy with the proposed method
than with cases using dense rewards.

Comparing with the flappy bird experiment, the position
reward represents the goodness for each transition, which
means it is a ‘dense’ reward; the hand-crafted reward in the
flappy bird was the delayed reward. We found that the pro-
posed method could generate the predicted dense reward,

4Two layers had (2×5×5) kernels, and the next two layers had
(2 × 3 × 3) kernels. All had 32 filters and (2, 1, 1) stride in every
two layers.

5The +1 reward was for the terminal condition.
6The average position was 650, even with very long training

steps, e.g., 3 million.



which is better value than the sparse reward and has potential
to become similar to the dense reward, without any reward
information.

Regarding future work for the Mario experiment, we
believe using deeper networks as function approximators
and higher-resolution input images may improve the perfor-
mance of the convergence further.

Conclusion
In this paper, we proposed a reinforcement learning method
that uses an internal model based on expert-demonstrated
state trajectories to predict rewards. This method does not
require learning the dynamics of the external environment
from state-action pairs. The internal model consisted of a
temporal sequence predictive RNN for the given expert state
distribution. During RL, the agent calculated the similarity
between actual and predicted states, and this value was used
to predict the reward. We compared our proposed methods
with hand-crafted rewards and previous methods in four dif-
ferent environments. Overall, we found that using internal
model agents enables the learning of good policies, learning
curves that have better initialization, and learning that con-
verges faster than hand-crafted reward and sparse reward in
most cases. It was also shown that the method could be ap-
plied to cases in which the demonstration was obtained di-
rectly from videos by person.

However, detailed trends were different for the different
environments depending on the complexity of the task. As
a current limitation of the method, we found that none of
the rewards based on our proposed method were versatile
enough to be applicable to every environment without any
changes in the reward definition. There is thus room for fur-
ther improvement, especially regarding modeling the global
temporal characteristics of state trajectories. We intend to
tackle the problem of generalizing across tasks in future
work.
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