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Abstract
We derive convergence guarantees for gradient-based learn-
ing algorithms in non-cooperative multi-agent settings. Uti-
lizing the singular values of the game Hessian and of its sym-
metric part, we obtain a finite-time convergence bound to an
ε-differential Nash. We support the analysis with several nu-
merical examples including a continuous game that illustrates
the analytical convergence guarantee, a linear-quadratic dy-
namic game with a known Nash equilibrium, and a multi-
agent control problem.

1 Introduction
A significant focus in non-cooperative game theory is the
characterization and computation of equilibria such as Nash
equilibria and its refinements. A natural question that arises
is how players find or learn such equilibria. With this ques-
tion in mind, a variety of fields have focused their atten-
tion on the problem of learning in games which has lead
to a plethora of learning algorithms including gradient play,
fictitious play, best response, and multi-agent reinforcement
learning among others (Fudenberg and Levine 1998). While
convergence has been studied for many of these algorithms,
the results tend to asymptotic.

More recently, game theoretic models of algorithm inter-
action are being adopted in machine learning applications.
For instance, game theoretic tools are being used to improve
the robustness and generalizability of machine learning al-
gorithms; e.g., generative adversarial networks have become
a popular topic of study demanding the use of game theo-
retic ideas to provide performance guarantees (Daskalakis
et al. 2017). In other work from the learning community,
game theoretic concepts are being leveraged to analyze the
interaction of learning agents—see, e.g., (Heinrich and Sil-
ver 2016; Mazumdar and Ratliff 2018; Balduzzi et al. 2018;
Tuyls et al. 2018).

Despite this activity, we still lack a complete understand-
ing of the dynamics and limiting behaviors of coupled, com-
peting learning algorithms. In particular, it is important to
know when to terminate the algorithms in order to ensure
certain performance guarantees or to obtain a finite time
bound on the error that can be used to provide guarantees
on subsequent control or incentive policy synthesis.
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One may imagine that the myraid results on convergence
of gradient descent in optimization readily extend to the
game setting. Yet, they do not since gradient-based learning
schemes in games do not correspond to gradient flows. Gra-
dient flows are a very narrow class of flows admitting nice
convergence guarantees—e.g., almost sure convergence to
local minimizers—due to the fact that they preclude flows
with the worst geometries (Pemantle 2007). In particular,
the gradient-based learning dynamics for competitive, multi-
agent settings have a non-symmetric Jacobian and as a con-
sequence their dynamics may admit complex eigenvalues
and non-equilibrium limiting behavior such as periodic or-
bits. In short, this fact makes it difficut to extend many of
the optimization approaches, whose primary technique de-
pends on a cost decreasing at each update, to convergence
in single-agent optimization settings to multi-agent settings.
In fact, in games, as our examples highlight, a player’s cost
can increase when they follow the gradient of their own cost.
This behavior is due to the coupling between the agents.

In this short paper, we study n-player continuous games in
which each player i ∈ I = {1, . . . , n} wishes to selection
an action xi ∈ Rdi that minimizes their cost fi(xi, x−i)
given the actions of all other agents, x−i = (xj)j∈I,j 6=i. The
class of learning algorithms takes the form of simultaneous
gradient-based updates given by

x+i = xi − γiDifi(xi, x−i), ∀ i ∈ I (1)

where Difi denotes the derivative of fi with respect to
player i’s choice variable xi, and γi is player i’s learning
rate. That is, players myopically update their actions by fol-
lowing the gradient of their cost with respect to their own
choice variable. We assume that players have oracle access
to their gradient Difi at each time step.

Contributions. Leveraging tools from dynamical systems
and optimization, we provide finite-time convergence guar-
antees for gradient-based learning in non-cooperative games
with continuous action spaces. The class of gradient-based
learning algorithms we study encompases a wide variety
of approaches to learning in games including multi-agent
policy gradient and multi-agent gradient-based online opti-
mization where agents have oracle access to their gradients.
Specifically, we make the following contributions: (i) we
characterize the range of learning rates for which gradient-
based learning achieves an asymptotic convergence guaran-



tee, and (ii) assuming players adopt a learning rate γ char-
acterized in terms of the eigenvalues of the Jacobian of the
game dynamics, we provide a finite-time convergence guar-
antee ensuring the players reach an ε-neighborhood of a sta-
ble Nash equilibrium.

We support this analysis with several illustrative numer-
ical examples including a continuous game that demon-
strates the finite-time analytical convergence guarantee,
multi-agent policy gradient applied to a linear-quadratic dy-
namic game with a known Nash equilibrium that acts as a
benchmark for our analytical results, and a minimum-fuel
particle intersection problem with unknown equilibria that
demonstrates applicability in more complex settings. We
conclude with discussion and future work. Specifically, we
describe recent extensions to the stochastic setting in which
agents only have access to an unbiased estimate of their gra-
dient.

Organization. The remainder of the paper is organized
as follows. In Section 2, we provide a breif overview of the
relevant game theoretic concepts. We provide the main re-
sults on convergence of gradient-based learning in games in
Section 3. The convergence results are followed by illustra-
tive examples in Section 4 and we conclude with discussion
and a description of extensions to the presented framework
in Section 5.

2 Mathematical Preliminaries
Consider the game (f1, . . . , fn) on X = X1 × · · · × Xn

where fi : X → R is player i’s cost function and Xi =
Rdi is their action space. We use the term player and agent
interchangably. Let x = (xi, x−i) ∈ X denote the joint
strategy where xi ∈ Xi is player i’s choice variable and
x−i ∈ X−i is the vector of choice variables of all players
excluding i. If each fi is differentiable, then the differential
game form (Ratliff, Burden, and Sastry 2016) is given by
ω(x) = [D1f1(x) · · · Dnfn(x)] where Difi is the partial
derivative of fi with respect to xi.
Assumption 1. For each i ∈ I, fi ∈ Cr(X,R) for
some r ≥ 2. Moreover, ω(x) is L–Lipschitz—i.e., ‖ω(x) −
ω(x′)‖ ≤ L‖x− x′‖.

The game Hessian is given by

Dω(x) =

D11f1(x) · · · D1nf1(x)
...

. . .
...

Dn1fn(x) · · · Dnnfn(x)

 .
The entries of the above matrix are dependent on x, however,
we will drop this dependence where obvious. Note that each
Diifi is symmetric under Assumption 1, yet Dω is in gen-
eral not symmetric. This is an important point and leads to
a cruicial difference between the analysis of gradient-based
learning in games versus typical analysis of gradient-based
approaches to optimization of a single objective.

One of the most common characterizations of the limiting
behavior in games is a Nash equilibrium.
Definition 1. An x ∈ X is a local Nash equilibrium for the
game (f1, . . . , fn) if, for each i ∈ I, there exists an open
set Wi ⊂ Xi on which fi(xi, x−i) ≤ fi(x

′
i, x−i) for all

x′i ∈ Wi and such that xi ∈ Wi. If the above inequalities
are strict, x is a strict local Nash equilibrium.

Local Nash equilibria can be characterized in terms of
first and second order conditions on player cost functions
(f1, . . . , fn).

Definition 2. An x ∈ X is said to be a critical point for the
game if ω(x) = 0.

As shown in (Ratliff, Burden, and Sastry 2016), ω(x) = 0
and D2

iifi(x) ≥ 0 for each i ∈ I are necessary conditions
for x to be a local Nash equilibrium. Sufficient conditions
give rise to the following definition of a differential Nash
equilibrium.

Definition 3 ((Ratliff, Burden, and Sastry 2016)). An x ∈ X
is a differential Nash equilibrium if ω(x) = 0 and D2

iifi(x)
is positive–definite for each i ∈ I.

Differential Nash need not be isolated; yet, for a differen-
tial Nash x, ifDω(x) is non-degenerate (i.e., det(Dω(x)) 6=
0), then x is an isolated strict local Nash equilibrium. Non-
degenerate differential Nash are generic amongst local Nash
equilibria and they are structurally stable (Ratliff, Burden,
and Sastry 2014) which ensures they persist under small
perturbations. This also implies an asymptotic convergence
result: if the spectrum of Dω is strictly in the right-half
plane (i.e. spec(Dω(x)) ⊂ C◦+), then a differential Nash
equilibrium x is (exponentially) attracting under the flow of
−ω (Ratliff, Burden, and Sastry 2016, Proposition 2).

Definition 4. A local Nash equilibrium x ∈ X is stable if
spec(Dω(x)) ⊂ C◦+.

3 Convergence Guarantees
The multi-agent learning framework we analyze is such that
each agent’s rule for updating their choice variable consists
of the agent modifying their action xi in the direction of
their individual gradient Difi. Collectively, the dynamics of
gradient-based learning can be written as

xk+1 = xk − γ � ω(xk) (2)

where γ = (γ1, . . . , γn) is a vector of learning rates, one for
each agent, and where the � notation means block-entry-
wise multiplication—i.e.,

γ � ω(x) = diag(γ1Id1 , . . . , γnIdn)ω(x)

with Idi a di × di identity matrix.
The above learning rule can be thought of as a discretized

numerical scheme approximating the continuous time dy-
namics

ẋ = −ω(x).

As we remarked in the preceding section, with a judicious
choice of learning rate γ, (2) will converge (at an exponential
rate) to a locally stable equilibrium of the dynamics ẋ =
−ω(x).

For a stable differential Nash x∗, let Br(x∗) be a ball of
radius r > 0 around the equilibrium x∗ that is contained in



the region of attraction for x∗1.
Proposition 1. Consider an n–player continuous game
(f1, . . . , fn) satisfying Assumption 1. Let x∗ ∈ X be a sta-
ble differential Nash equilibrium. Suppose agents use the
gradient-based learning rule xk+1 = xk − γ � ω(xk) with
learning rates 0 < γi < γ̃ for each i ∈ I and where γ̃ is the
smallest positive h such that maxj |1− hλj(Dω(x∗))| = 1.
Then, for x0 ∈ Br(x∗), xk → x∗.

The above result provides a range for the possible learn-
ing rates for which (2) converges to a stable differential Nash
equilibrium x∗ of (f1, . . . , fn) assuming agents initialize
in a ball contained in the region of attraction of x∗. Note
that the usual assumption in gradient-based approaches to
single-objective optimization problems (in which case Dω
is symmetric) is that γ < 1/L. This is sufficient to guar-
antee convergence since the spectral radius of a matrix is
always less than any operator norm which, in turn, ensures
that |1− γλj | < 1 for each λj ∈ spec(Dω(x∗)).

The convergence guarantee in Proposition 1 is asymptotic
in nature. It is often useful, from both an analysis and synthe-
sis perspective, to have non-asymptotic or finite-time con-
vergence results. Such results can be used to provide guaran-
tees on decision-making processes wrapped around the cou-
pled learning processes of the otherwise autonomous agents.
The next result, provides a finite-time convergence guaran-
tee for gradient-based learning where agents uniformly use
a fixed step size.

Let Br(x∗) be defined as before with the added condi-
tion that it be defined to be the largest ball in the region of
attraction such that on Br(x∗) the symmetric part of Dω—
i.e., S = 1

2 (Dω + DωT )—is positive definite. For a given
symmetric matrix A ∈ Rd×d (where d =

∑
i∈I di), let

λd(A) ≤ · · · ≤ λ1(A) be its eigenvalues and define

α = minx∈Br(x∗) λd
(
S(x)TS(x)

)
and

β = max
x∈Br(x∗)

λ1(Dω(x)TDω(x)).

Theorem 1. Consider a game (f1, . . . , fN ) on X = X1 ×
· · · × Xn satisfying Assumption 1. Let x∗ ∈ X be a stable
differential Nash equilibrium. Suppose x0 ∈ Br(x

∗) and
that α < β. Then, given ε > 0, the gradient-based learn-
ing dynamics with learning rate γ =

√
α/β obtains an ε–

differential Nash such that xt ∈ Bε(x∗) ⊂ Br(x∗) for all

t ≥
⌈

2
β

α
log

r

ε

⌉
.

Before we proceed to the proof, let us remark on the as-
sumption that α < β. First, α ≤ β is always true; indeed,
supressing the dependence on x,

λd(S
TS) ≤ λ1(STS) ≤ σmax(Dω)2 = λ1(DωTDω)

1Many techniques exists for approximating the region of at-
traction; e.g., given a Lyapunov function, its largest invariant
level set can be used as an approximation (Sastry 1999). Since
spec(Dω(x∗)) ⊂ C+

◦ , the converse Lyapunov theorem guarantees
the existence of a local Lyapunov function.

where σmax(·) denotes the largest singular value of its argu-
ment. Thus, the condition that α < β is generally true, for
equality to hold, the symmetric part of Dω(x) would have
repeated eigenvalues, which is not generic. Hence, we in-
clude this assumption in Theorem 1, but note that it is not
restrictive and is fairly benign.

Proof of Theorem 1. It suffices to show that for the choice
of γ, the eigenvalues of I − γDω(x) are in the unit circle.
Indeed, since ω(x∗) = 0, we have that

‖xt+1 − x∗‖2 = ‖xt − x∗ − γ(ω(xt)− ω(x∗))‖2
≤ supx∈Br(x∗) ‖I − γDω(x)‖2‖xt − x∗‖2

If supx∈Br(x∗) ‖I − γDω(x)‖2 is less than one, where the
norm is the operator 2–norm, then the dynamics are con-
tracting. For notational convenience, we drop the explicit
dependence on x. Since

(I − γDω)T (I − γDω)

≤ (1− 2γλd(S) + γ2λ1((Dω)TDω))I

≤ (1− α
β )I

where the last inequality holds for γ =
√
α/β and we note

that λd(S) ≥
√
α on Br(x∗). Hence,

‖xt+1 − x∗‖2 ≤ sup
x∈Br(x∗)

‖I − γDω(x)‖2‖xt − x∗‖2

≤ (1− α
β )1/2‖xt − x∗‖2.

Since α < β, (1− α/β) < exp(−α/β) so that

‖xT − x∗‖2 ≤ exp(−Tα/(2β))‖x0 − x∗‖2.
This, in turn, implies that xt ∈ Bε(x

∗) for all t ≥ T =

d2βα log(r/ε)e.

Note that γ =
√
α/β is selected to minimize 1 −

2γλ1(S) + γ2λd((Dω)TDω). Hence, this is the fastest
learning rate given the worst case eigenstructure of Dω over
the ball Br(x∗) for the choice of operator norm ‖ · ‖2. We
note, however, that faster convergence is possible as indi-
cated by Proposition 1 and observed in the examples in Sec-
tion 4. Indeed, we note that the spectral radius ρ(·) of a
matrix is always less than its maximum singular value—
i.e. ρ(I − γDω) ≤ ‖I − γDω‖2—so it is possible to con-
tract at a faster rate to the equilibrium perhaps given an-
other choice of norm and γ. We remark that if Dω was sym-
metric (i.e., in the case of a potential game (Monderer and
Shapley 1996) or a single-agent optimization problem), then
ρ(I − γDω) = ‖I − γDω‖2 and in this case

√
α/β is the

largest rate one could select. In games, however, Dω is not
symmetric.

4 Numerical Experiments
We consider three numerical examples that show conver-
gence to local Nash equilibria. The first is a simple warm-up
example to illustrate the main theorem. The second is a more
complicated numerical example that serves as a benchmark
problem since its Nash equilibrium is completed character-
izable and computable. The third is a multi-agent control
problem with initially unknown Nash equilibria.



4.1 Two-player game with quadratic costs
Consider two players indexed by i = 1, 2 with strategies
xi ∈ R and coupled quadratic costs given by

f1(x1, x2) = 0.5x21 − 20x1x2,

and

f2(x1, x2) = 15x2x1 + 1.5x22.

The point (x1, x2) = (0, 0) is a Nash equilibrium for this
problem. The agents perform simultaneous gradient descent
using the update rules given by

x+1 = x1 − γD1f1(x1, x2),

x+2 = x2 − γD2f2(x1, x2),

where the gradients for each agent are

D1f1(x1, x2) = x1 − 20x2,

D2f2(x1, x2) = 15x1 + 3x2,

and γ is determined using Theorem 1. We compute the max-
imum singular value of the game hessian Dω and minimum
singular value of its symmetric part, S = 1

2 (DωT + Dω),
and square them to obtain α and β. With

Dω =

[
1 −20
15 3

]
and S =

[
1 −2.5
−2.5 3

]
,

we determine that α = 0.4898 and β = 412.3. Using a
learning rate γ =

√
α/β = 1.68 × 10−3 we show that

the algorithm converges in Figure 1 as the blue curve, and
it is upper bounded by the result of Theorem 1 shown as
the dashed curve. We note that since gradient-based learn-
ing schemes in games do not correspond to gradient flows,
the cost does not necessarily decrease at each step.

4.2 Policy Gradient in LQ Dynamic Games
We now consider a linear quadratic dynamic game with two
players in the space of linear feedback policies. This game
serves as a useful benchmark since it has a unique global
equilibrium in linear feedback strategies (Basar and Olsder
1998) that we can compute via a set of coupled algebraic
Riccati equations.

Consider the discrete time linear dynamical system

z(t+ 1) = Az(t) +B1u1(t) +B2u2(t)

where z(t) ∈ R2 and ui(t) = −Kiz(t) ∈ R is a linear
feedback control policy for player i. Each player seeks to
minimize their cost

fi(z0, ui) =
∑∞
t=0 z(t)

TQiz(t) + ui(t)
TRiui(t)

with respect to ui and subject to the state equation con-
straints which couple the players. We let the parameters be
defined as

A =

[
0 1
1 0.4

]
, B1 =

[
1
0

]
, B2 =

[
0
1

]
,

Q1,2 =

[
1 0
0 1

]
, R1 = [4] , R2 = [1] .
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Figure 1: Quadratic toy example showing convergence to the
Nash equilibrium through gradient-play. Blue curve plots
‖[x1, x2]‖22 with learning rate γ =

√
α/β and the dashed

curve is the upper bound from Theorem 1.
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Figure 2: Convergence of linear quadratic policy gradient to
the Nash equilibrium: (a) Each player’s cost converges to
optimal cost shown by the dotted red lines. (b) The dotted
black line shows the number of iterations required to con-
verge within a value of ε as per Theorem 1. Convergence
occurs faster than the theorized bound for various initializa-
tions of K1 and K2 when using γ =

√
α/β.



We note that the open loop system is unstable, so the players
must stabilize the system while minimizing their respective
costs.

We compute the game form ω(K1,K2) for costs f1
and f2 using initial state z0 = [1 1]

T . An explicit ex-
pression for the game form is given by ω(K1,K2) =
[ω1(K1,K2) ω2(K1,K2)] where

ωi(K1,K2) =(RiKi +BTi Pi(BiKi +B−iK−i)

−BTi PiA)

∞∑
t=0

z(t)z(t)T

We compute P1 and P2 by solving the Riccati equations for
a given K1 and K2.

Pi = (A−B1K1 −B2K2)TPi(A−B1K1 −B2K2)

+KT
i RiKi +Qi, i = 1, 2.

In order to compute the appropriate step size, γ, we com-
pute the optimal Nash feedback gains for the infinite hori-
zon game, K∗1 , K∗2 via a set of coupled Riccati equations
using a well-known iterative Lyapunov algorithm (Li and
Gajic 1995).

The unique feedback Nash is given by (K∗1 ,K
∗
2 ) =

([0.0019 0.2301] , [0.6825 0.3605]). We then compute
the game Hessian at the optimal infinite horizon gains
Dω(K∗1 ,K

∗
2 ) and γ =

√
α/β = 3.60 × 10−4 with α =

1.49× 10−1 and β = 1.07× 103.
We initialize the descent algorithm from a variety of gains

K1,K2 sampled around a ball of radius 0.3. Figure 2 shows
the convergence of the descent algorithm to the Nash poli-
cies. Observe that by choosing a learning rate determined by
Theorem 1 using the game hessian Dω(K∗1 ,K

∗
2 ), the iter-

ations required to converge to an ε–differential Nash con-
forms to the theoretical bound given in Theorem 1; the
dashed black line in Figure 2 shows the curve of (ε, T )–
pairs where T = d2β/α log(r/ε)e. However, this learning
rate is not optimal, as choosing a larger γ empirically results
in quicker convergence. We note also this is a worst case
bound over all initializations in the ball Br(x∗).

Furthermore, individual players’ costs can increase de-
spite performing gradient descent. Figure 2a illustrates sev-
eral samples where the players begin at a cost lower than
optimal. This is characteristic of a game where players may
converge to a stable Nash with higher cost for each player.

4.3 Minimum-fuel particle avoidance
We present an example with n = 4 collision-avoiding par-
ticles traversing across the unit circle. Each particle follows
discrete-time linear dynamics

zi(t+ 1) = Azi(t) +Bui(t)

for t = 1, · · · , N where

A =

[
I hI
0 I

]
∈ R4×4 and B =

[
h2I
I

]
∈ R4×2.

The identity matrix is I and constant h = 0.1. These dynam-
ics represent a typical discretized version of the continuous
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Figure 3: Minimum-fuel particle avoidance control example.
(a) Each particle seeks to reach the opposite side of the circle
using minimum fuel while avoiding each other. (b) The joint
strategy x = (u1, · · · ,u4) is initialized to the minimum fuel
solution ignoring interaction between particles. (c) and (d)
Two different equilibrium solutions achieved using slightly
randomized initial condition. The circles represent the ap-
proximate boundaries around each particle at time t = 5. (e)
Convergence of the descent method compared to the upper
bound.

dynamics r̈ = u in which u represents a R2 force vector
used to accelerate the particle, and the state z = [r, ṙ] repre-
sents its position and velocity. Each particle has cost

Ji(u1, · · · ,ui, · · ·un) =

N∑
t=1

‖ui(t)‖2R +

N+1∑
t=1

‖zi(t)− z̄i‖2Q

+
∑
j 6=i

N+1∑
t=1

ρe−σ‖zi(t)−zj(t)‖
2
S



where ‖ · ‖P is the quadratic norm, i.e. ‖z‖2P = zTPz
with P positive semi-definite, and boldface ui is a con-
catenated vector of control vectors for all time, i.e ui =
(ui(1), · · · , ui(N)). The first two terms of the cost cor-
respond to the minimum fuel objective and quadratic cost
from desired final state z̄i, a typical setup for optimal con-
trol problems. We use R = diag(0.1, 0.1) and Q =
diag(1, 1, 0, 0).

The final term of the cost function is the sum of all pair-
wise interaction terms between the particles, modeled af-
ter the shape of a gaussian with scaling constants ρ = 10
and σ = 100. This gaussian-shaped pairwise cost encodes
smooth boundaries around the particles.

To find an equilibrium solution between all particles, we
use simultaneous gradient descent on the agents’ respective
cost function. Each agents’ strategy xi is vector ui and the
gradient Difi is ∂Ji

∂ui
of size 2N .

Figure 3(a) visualizes the problem setup. Each particles’
initial position zi(0) is located on the left side of a unit cir-
cle, separated by π/5, and their desired final positions z̄i are
located directly opposite. The particles begin with zero ve-
locity and must solve for a minimum control solution that
also avoids collision with other particles.

We first initialize the problem with the optimal solu-
tion for each agent ignoring the pairwise interaction terms,
shown in Figure 3(b) . This can be computed using classical
discrete-time LQR methods or by gradient descent. Then we
randomly perturb this initialization to allow for convergence
to different equilibria. We find two of such equilibria by run-
ning simultaneous gradient descent with γ = 1× 10−4 until
the gradients reach machine precision zero. These equilib-
ria are shown in Figure 3(c) and 3(d). The block diagonal
entries of the game Hessian are positive-definite for each
i = 1, · · · , 4, (Diifi ≥ 0), and therefore the solutions are
differential Nash equilibria for the problem.

5 Discussion
We provide asymptotic and finite-time convergence guaran-
tees for gradient-based learning in general-sum, continuous
games. Specifically, we leverage the limiting continuous-
time dynamical system and its Jacobian to construct a learn-
ing rate γ such that if the agents uniformly adopt this learn-
ing rate, they will be guaranteed to converge to a neighbor-
hood of a stable local Nash equilibrium in finite-time. De-
spite γ not being an optimal learning rate, this method shines
light on the theoretical basis of interaction of gradient-based
learning dynamics in multi-agent settings where agents have
their own individual objective that depends on the actions
of others. Beyond analysis, the results are also useful for
synthesis. One can use them to design games with desir-
able properties; this includes incentive design, control the-
ory, and even machine learning, e.g., where game theoretic
techniques are being employed to learn robust neural net-
works such as generative adversarial networks.

We empirically verify the theoretical bounds by testing
them with a toy continuous game and an LQ dynamic game,
both with known Nash equilibria. The experiments verify
that, with a learning rate defined by Theorem 1, agents

converge to an ε−differential Nash in finite time. We also
present a particle collision avoidance example to demon-
strate convergence to multiple equilibria, both not known a
priori.

5.1 Extensions
Though not included in this short paper, we have extended
the results to the stochastic setting. In particular, we pro-
vide finite-time, high-probability convergence guarantees
for gradient-based learning in games in which the agents
do not have oracle access to their gradients, but rather only
have access to an unbiased estimator of their individual gra-
dients (Ratliff et al. 2019). Just as in the deterministic set-
ting, we leverage the continuous time limiting dynamics and
argue that sample points from the stochastic gradient-based
learning update are asymptotic pseudo-trajectories of the
semi-flow corresponding to −ω. This allows us to analyze
the behavior of the limiting system and argue that sample
path representing the sequence of updates made by players
does not deviate “far” from the continuous time trajectory. In
the stochastic setting, agents do not have a constant learning
rate. Instead they each possess a sequence of learning rates.
The results apply to both the case where agents have uni-
form learning rates and the case where agents have distinct
learning rates. A direction we are actively pursuing is non-
asymptotic convergence guarantees in the stochastic setting.
Such results will be particularly useful for providing guar-
antees on the design of control or incentive policies to coor-
dinate agents in finite time.

5.2 Future Work
The work in this short paper simply scratches the surface;
there are a number of avenues to pursue for future work.
For instance, the results as stated apply to continuous games
with Euclidean strategy spaces. An interesting avenue to
pursue is the study of learning in games where the agents
decision spaces are constrained sets or Riemannian man-
ifolds. The latter arises in a number of robotics applica-
tions and in this case, the update rule will need to be modi-
fied by the appropriately defined retraction such as xk+1 =
expxk

(γk(ω(xk))) (Shah 2017). The former arises in a va-
riety of applications where the learning rules are abstrac-
tions of agents learning in, e.g., physically constrained en-
vironments. The update rule in this case will also need to
be defined in terms of the appropriate proximal map thereby
leading to potentially non-smooth dynamics (Borkar 2008;
Kushner and Yin 2003) which is even more challenging in
the stochastic setting. Yet, such extensions will lead to a
framework and set of analysis tools that apply to a broader
class of multi-agent learning algorithms.

While we present the work in the context of gradient-
based learning in games, there is nothing that precludes
the results from applying to update rules that conform to
our setting in the sense that agents are myopically updating
their decisions in time using a process of the form xk+1 =
xk − γ� g(xk). In particular, it is not necessary that the dy-
namics g correspond to a game form ω(x) = (Difi(x))i∈I .
For instance, in the stochastic setting, variants of multi-agent
Q-learning conform to this setting since Q-learning can be



written as a stochastic approximation update. Exploring and
characterizing which commonly used multi-agent learning
approaches conform to this setting and, more interestingly,
discovering what their limiting dynamics are is a particularly
exciting avenue of research.

As pointed out in (Mazumdar and Ratliff 2018), not all
critical points of the dynamics ẋ = −ω(x) that are attracting
are necessarily Nash equilibria; some of the stable equilibria
of the dynamics are such that in the context of the game, one
or more agent has an incentive to deviate despite the equilib-
rium being attracting under the flow of−ω. In particular, any
equilibrium x such that spec(Dω(x)) ⊂ C◦− and at least one
of the Diifi(x) has a non-positive eigenvalue is a candidate.
The higher the dimension of the game, the more likely that
there are spurious equilibria of the gradient-based dynam-
ics that do not correspond to Nash equilibria. Understanding
this phenomena and developing computational techniques
to avoid them is an interesting avenue of future research.
Recent work has explored this in the context of zero-sum
games (Mazumdar, Jordan, and Sastry 2019), yet the pro-
posed approach requires coordination amongst the learning
agents, which is not a problem in settings where the goal is
to compute Nash (e.g., for the purpose of training generative
adversarial networks). However, in settings where the objec-
tive is to study the learning behavior of autonomous agents
seeking an equilibrium, an alternative approach or perspec-
tive is needed.

Lastly, it was also shown in (Mazumdar and Ratliff 2018)
that gradient-based learning in games converges on a set of
measure zero to strict saddle points of the continuous time
dynamics ẋ = −ω(x), which may or may not correspond
to Nash equilibria of the game. Another direction of interest
for future research is in quantifying the difficulty of escaping
saddle points in games perhaps using the geometry of the
underlying space and the graphs of the functions.

6 Acknowledgements
This material is based upon work supported by Computa-
tional Neuroscience Graduate Training Program at the Uni-
versity of Washington.

References
Balduzzi, D.; Racaniere, S.; Martens, J.; Foerster, J.; Tuyls,
K.; and Graepel, T. 2018. The mechanics of n-player differ-
entiable games. CoRR abs/1802.05642.
Basar, T., and Olsder, G. 1998. Dynamic Noncooperative
Game Theory. Society for Industrial and Applied Mathe-
matics, 2 edition.
Borkar, V. 2008. Stochastic Approximation: A Dynamical
Systems Viewpoint. Springer.
Daskalakis, C.; Ilyas, A.; Syrgkanis, V.; and Zeng, H. 2017.
Traning GANs with Optimism. arxiv:1711.00141.
Fudenberg, D., and Levine, D. K. 1998. The theory of learn-
ing in games, volume 2. MIT press.
Heinrich, J., and Silver, D. 2016. Deep reinforcement
learning from self-play in imperfect-information games.
arxiv:1603.01121.
Kushner, H. J., and Yin, G. G. 2003. Stochastic Approxima-
tion and Recursive Algorithms and Applications. Springer,
2nd edition.
Li, T.-Y., and Gajic, Z. 1995. Lyapunov iterations for solv-
ing coupled algebraic riccati equations of nash differential
games and algebraic riccati equations of zero-sum games.
In Olsder, G. J., ed., New Trends in Dynamic Games and
Applications, 333–351. Boston, MA: Birkhäuser Boston.
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