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Abstract
Pursuit-evasion is a multi-agent sequential decision
problem wherein a group of agents known as pursuers
coordinate their traversal of a spatial domain to locate
an agent trying to evade them. Pursuit evasion prob-
lems arise in a number of import application domains
including defense and route planning. Learning to op-
timally coordinate pursuer behaviors so as to minimize
time to capture of the evader is challenging because of
a large action space and sparse noisy state information;
consequently, previous approaches have relied primarily
on heuristics. We propose a variant of Thompson Sam-
pling for pursuit-evasion that allows for the application
of existing model-based planning algorithms. This ap-
proach is general in that it allows for an arbitrary number
of pursuers, a general spatial domain, and the integra-
tion of auxiliary information provided by informants. In
a suite of simulation experiments, Thompson Sampling
for pursuit evasion significantly reduces time-to-capture
relative to competing algorithms.

1 Introduction
The general setup for pursuit evasion problems wherein
multiple agents coordinate their efforts to locate a
shrewd adversary is a useful model for important real-
world decision problems arising in security, law en-
forcement, and wildlife management (Nahin 2012),
(Fang, Stone, and Tambe 2015). Indeed, our interest in
this problem is motivated by our involvement with the
adaptive search for nuclear materials in collaboration
with the consortium for non-proliferation enabling ca-
pabilities (CNEC).

There is an extensive literature on pursuit-evasion
problems both from a theoretical and computational as-
pect (see (Rodin 1987), (Yavin and Pachter 2014) for an
extensive list of references). Most closely related to the
problem we consider is the partially observable Markov
pursuit game studied by Hespanha et al. (2000). Heuris-
tic search strategies in this domain are based on ap-
proximations of the belief state of the evader’s location
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given current information; e.g., the local-max heuristic
uses a one-step greedy optimization of the probability
of capture in the next time step whereas the global-max
heuristic moves pursuers toward the posterior mode o
the evader’s location (Hespanha, Prandini, and Sastry
2000), (Vidal et al. 2002). Kwak & Kim (2014) used
a weighted combination of local- and global-max with
the weights tuned using reinforcement learning.

We present a variant of Thompson Sampling for
pursuit-evasion that comprises the following steps at
each time point: (i) computing a posterior distribution
over the space of possible evader strategies; (ii) trun-
cating the tails from this posterior and then sampling
a strategy from the resultant truncated distribution; and
(iii) using model-based planning to estimate the optimal
pursuer strategy. The truncation in (ii) can be seen as
a mechanism to limit exploration to make the method
‘safe,’ i.e., to avoid potentially catastrophic action se-
lection (Garcıa and Fernández 2015). The proposed al-
gorithm performs favorably relative to competitors in
terms of time-to-capture in a suite of simulation experi-
ments including pursuit-evasion over a grid and the co-
ordination of ghost behavior in the class arcade game
Pac-Man.

2 Setup and Notation
We consider a pursuit-evasion problem evolving in dis-
crete time over a spatial domain represented (or approx-
imated) by a fixed network. We consider a team of K
pursuers coordinating their movements across the net-
work to locate a single evader that is moving to avoid
the pursuers and reach a goal node in the network. The
initial location of the evader and goal node are unneces-
sarily known to the pursuers in our formulation. If the
pursuers intercept the evader before the evader reaches
a goal node, they receive a positive reward signal which
may depend on time to capture or other attributes of
their search path, e.g., paths taken etc. At each time
point, the pursuers inspect nearby nodes (they have a
limited radius of vision) for the evader and may also
receive information about the evader’s location from



benevolent informant; this latter feature is designed to
reflect intelligence in a defense application.

Let L = {1, . . . , L} be the set of nodes in the net-
work and let Ω ∈ {0, 1}L×L be its adjacency ma-
trix, i.e., Ω`,`′ = 1 if locations ` and `′ are con-
nected (` is also connected to itself). At each time point
t ∈ T = {0, 1, 2, . . .}, each agent selects a node from
among the neighbors of their current location to which
to move; a node is defined as its own neighbor to al-
low an agent to remain in the same location for multi-
ple time steps. Let Et ∈ L denote the location of the
evader at time t and G ⊂ L the set of the evader’s
goal locations. Thus, if Et ∈ G before the evader is
captured the game ends and the evader is declared the
winner. Let Wt =

(
W 1
t , . . . ,W

K
t

)
∈ LK denote the

locations of the K pursuers at time t. Let d(`, `) denote
the graph distance between nodes ` and `′. If the event
mink d(W t

k, Et) ≤ 1 occurs before the event Et ∈ G
then the evader is said to be caught, the game ends, and
the pursuers are declared the winners. Define Ct to be
an indicator that the game has not ended at time t; thus,
the duration of the game is T = min {t : Ct = 1}. Let
Yt denote a momentary reward for the pursuers, e.g., a
small negative constant while the game is ongoing and a
large negative constant if the evader reaches its goal. In
addition, at each time t, the pursuers may receive infor-
mation from an informant in the form of a region Dt ⊆
L known to contain the evader at time t; for simplicity,
we assume that informant information is completely re-
liable though this can be relaxed. For notational conve-
nience, when no informant information is provided we
code Dt ≡ L. Also, we denote Rt as the event that the
pursuers obtain the informant region Dt at time t. The
information available to the pursuers at time t is there-
fore Ht = {R0,W0, C0, Y0, . . . , Yt−1, Rt,Wt, Ct}.
Let St = {Ht, E0, . . . , Et} denote the complete state
of the system at time t.

At each time point, the pursuers and evader select a
neighboring node to move to; however, the proposed
methodology can be extended to a richer set of ac-
tions, e.g., in the context of tracking nuclear mate-
rial, the set of actions might include planting a remote
sensor. Let BL denote the set of distributions over L.
A strategy, πE , is an infinite sequence of functions
πE,t : domSt → BL such that πE,t(St) has support
only on the neighbors of Et. Let ΠE denote the set of
allowable evader strategies. Similarly, let BLK denote
the space of distributions over LK and define a strat-
egy, πW , for the pursuers to be a sequence of maps
πW,t : domHt → BLK such that πW,t(Ht) has support
only on the neighbors of Wt. Let ΠW denote the set of
allowable pursuer strategies. In some applications, the
evader may only have access to a coarse summary of
St, as we shall see, such constraints can be imposed
through the class of candidates strategies considered for
the evader.

For each πE ∈ ΠE and πW ∈ ΠW , we de-
fine V (πE , πW ) = EπE ,πW

(∑T
t=0 γ

t−1Yt

)
, where

EπE ,πW denotes expectation with respect to the dis-
tribution induced by the strategies (πE , πW ) and γ ∈
(0, 1] is a discount factor. Given a strategy for the
evader, πE ∈ ΠE , an optimal pursuer strategy π∗W ∈
ΠW satisfies V (πE , π

∗
W ) ≥ V (πE , πW ) for all πW ∈

ΠW .

3 Estimating the Evader’s Strategy
If the evader’s strategy is known, the pursuers can
use standard methods from reinforcement learning
to construct an estimator of π∗W (Sutton and Barto
1998)(Powell 2007) (Si et al. 2004) (Busoniu et al.
2010) (Szepesvári 2010). Unfortunately, in practice
the evader’s strategy is not generally known. One ap-
proach is to approximate a Nash-equilibrium (Littman
1994)(Hu and Wellman 2003)(Wang and Sandholm
2003). However, while such game-theoretic solution
concepts are appealing in some contexts, such equi-
libria need not be unique and furthermore fail to ex-
ploit non-equilibria behavior (Gmytrasiewicz and Doshi
2005); this latter point is particularly relevant in pursuit-
evasion problems arising in defense and security ap-
plications in which evaders are likely following pre-
defined strategies, employing heuristics, or acting errat-
ically. We instead propose to model the evader’s strat-
egy using accumulating data and then to apply a vari-
ant of Thompson Sampling wherein, at each time t,
an evader’s strategy along with any other requisite sys-
tem dynamics are sampled from a posterior given Ht

and then these dynamics are used in model-based plan-
ning algorithm to estimate an optimal pursuer strategy
(Gopalan and Mannor 2015).

Let ΠE be a pre-specified class of candidate poli-
cies for the evader and let ρ(πE) denote a prior dis-
tribution over this class. The class ΠE could be finite,
finite-dimensional, or even infinite-dimensional though
in most applications this class is heavily informed by
domain expertise and finite-dimensional. At each time
t, the posterior distribution p(πE |Ht) is used to quantify
uncertainty about the evader’s strategy given the history
available to the pursuers; thus, πE is treated as a param-
eter indexing the model whereas πW is under control
of the pursuers. Under mild regularity conditions, we
provide closed-form expressions for p(πE |Ht) and the
posterior distribution of the evader’s location; these ex-
pressions are of interest in their own right as estimators
of such probabilities are used in heuristic search strate-
gies (Hespanha, Prandini, and Sastry 2000).

Let pt,πW (Hτ , πE) be a |L|-dimensional vector
where its rth component equals PπW (Et = r|Hτ , πE),
the probability the evader’s location is r at time t given
the history Hτ under policies πE and πW . Tt(Ht, πE)
is the transition matrix for the evader’s strategy πE at
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time t where (Tt(Ht, πE))`′,` = P (Et+1 = `′|Et =
`,Ht, πE), which is given for ∀ πE ∈ ΠE ; let F be the
standardization operator on the |L|-dimensional posi-
tive orthant, i.e., x 7→ x/

∑
j xj . At each time t define

Dt,πE = Dt ∩ ( ∪
`∈Wt

A`)c ∩GcπE , (1)

where GπE is the evader’s goal set under strategy πE .
Let IDt,πE denote an |L| × |L| diagonal matrix such
that the `th diagonal element is 1 if ` ∈ Dt,πE and 0
otherwise.

Assumption 3.1 For Dt ⊂ L, PπW (Rt|Wt, Et =
r, Yt−1, Ht−1, πE) is a constant for ∀ r ∈ Dt and
∀ πE ∈ ΠE .

Intuitively, this assumption states that the probabil-
ity that the informant provides non-trivial information
about the location of the evader does not depend on the
evader’s location or their strategy; this assumption can
be relaxed to handle the setting where there are multiple
informants more prone to report in different regions of
the network.

Lemma 3.1 For ∀ πE ∈ ΠE and ∀ πW ∈ ΠW ,

pt,πW (Ht−1, πE)

=Tt(Ht−1, πE)F (IDt−1,πE
pt−1,πW (Ht−2, πE)).

Moreover, pt,πW (Ht−1, πE) is constant for ∀ πW ∈
ΠW .

Corollary 3.1 For ∀ πE ∈ ΠE and ∀ πW ∈ ΠW ,

pt,πW (Ht, πE) = F (IDt,πEpt,πW (Ht−1, πE)).

Moreover, pt,πW (Ht, πE) is constant for ∀ πW ∈ ΠW .

Through the recursion in the preceding lemma, one can
derive pt,πW (Ht−1, πE) from the probability vector of
the evader’s initial location, p0.

Theorem 3.1 Let πE have prior ρ(πE), then ∀ πW ∈
ΠW ,

pπW (πE |Ht) ∝
t∏
i=0

PπW (Ei ∈ Di,πE |Hi−1, πE)ρ(πE).

Note that PπW (Ei ∈ Di,πE |Hi−1, πE) can be de-
rived from pi,πW (Hi−1, πE) from which pπW (πE |Ht)
can be obtained. We can see that pt,πW (Ht−1, πE),
pt,πW (Ht, πE) and pπW (πE |Ht) do not depend on πW ,
so we suppress πW in the notation for simplicity. More-
over, it means no matter which search strategy the pur-
suers follow, we can use the preceding relationships to
derive the posterior of the evader’s location and strategy
at each time t.

4 Estimating the Optimal Search
Strategy

Suppose that the optimal search strategy for the pur-
suers, say π∗W , were known, the optimal action for the
pursuers at time t would thus be

argmax
a

Eπ
∗
W ,πE

∑
v≥0

γvYt+v

∣∣∣∣Ht, At = a

 , (2)

where At is the pursuers’ action at time t. Furthermore,
it can be seen that the expectation in (2) is equal to

∑
r∈L

Eπ
∗
W ,πE

∑
v≥0

γvYt+v

∣∣∣∣Et = r,Ht, At = a


×Pπ∗W (Et = r|Ht, At = a, πE).

(3)
Under strategies πE and π∗W , Pπ∗W (Et = r|Ht, At = a)
equals {pt(Ht, πE)}r which is obtained in the previous
section since the action At = a is chosen deterministi-
cally. Thus, we only need to compute the Q-function

Q
π∗W ,πE
t (r,Ht, a)

=Eπ
∗
W ,πE

[∑
v≥0

γvYt+v

∣∣∣∣Et = r,Ht, At = a

]

=Eπ
∗
W ,πE

[
n−1∑
v=0

γvYt+v +
∑
v≥n

γvYt+v

∣∣∣∣
Et = r,Ht, At = a

]
.

(4)

Evaluating the Q-function is computationally burden-
some and grows exponentially in the number of time
points. Truncating the evaluation at n points can make
the computation manageable. However, this will result
in a loss of precision. An alternative is to evaluate the
Q-function using an n-point expansion and for all fur-
ther points approximate using a heuristic strategy. The
expensive part of the evaluation is calculating the max
at each point because it requires recursive enumeration
of all possible paths. However, with a heuristic strat-
egy, we only need to enumerate all possible paths for
n steps and follow the heuristic strategy for the other
steps, which can reduce the computational burden to a
great extent. Thus, we approximate (4) by

Q̂
π∗W ,πE
t (r,Ht, a)

=Eπ
∗
W ,n,π,πE

[
n−1∑
v=0

γvYt+v + γn
∑
v≥0

γvYt+n+v

∣∣∣∣
Et = r,Ht, At = a

]
,

(5)
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where Eπ∗W ,n,π,πE is the expectation if pursuers follows
the optimal strategy π∗W before time t+n and a heuristic
strategy π after that.

If n = 1, (5) is one-step look-ahead and the method
to obtain the optimal action is known as the rollout algo-
rithm with the rollout policy π (Sutton and Barto 1998).
If n ≥ 2, we can apply the heuristic search method to
compute (5) when additional assumptions are made. If
γn
∑
v≥0 γ

vYt+n+v is op(1), then the approximation
error can be made arbitrarily small by increasing n.
Thus the choice of the heuristic strategy has little im-
pact for large n.

To approximate the optimal strategy, we use a heuris-
tic strategy that moves pursuers in the direction of the
locations with the largest posterior coverage. Let πH be
the heuristic strategy and πE be the evader’s strategy.
This heuristic strategy is defined as

πH(Ht) = arg min
a1,...,aK
ai∈Awi

K∑
i=1

dist(ai, qi(Ht))

where q(Ht) = (q1(Ht), . . . , qK(Ht)) are the posi-
tions of the posterior with largest cumulative coverage
at the next time step. The ith location, qi(Ht), is as-
signed to pursuer i by minimizing the cumulative dis-
tance between each pursuer and their assigned target lo-
cation. These positions are defined as

q(Ht) = arg max
{`1,...,`K}⊂L

`k 6=`k′

{
K∑
j=1

dist(wj , `j)−1

1

 K∑
j=1

(pt+1,πE )`j = max
{˜̀1,...,˜̀K}⊂L˜̀

k 6=˜̀
k′

K∑
j=1

(pt+1(Ht, πE))˜̀
j


}
.

Since the game model is complex and computing the
joint probability of all events is not generally feasible;
instead, we apply a simulation-based method to approx-
imate (5). To compute (5) requires that the pursuers
follow the optimal strategy π∗W from the beginning of
the game to simulate a process which has the history
Ht and Et = r at time t. This is not generally possi-
ble as π∗W is unknown and the probability of the event
{Et = r,Ht} occuring is typically vanishingly small
when t is large. To solve this problem, we assume the
evader’s location Et and the pursuers’ history Ht pro-
vide a sufficient summary of the overall history St so
that the evader’s strategy πE is determined only by Et
and Ht.
Assumption 4.1 (Yt, Et+1, Rt+1,Wt+1, Ct+1, . . .)
given St depends on St only through (Et, Ht), for
t ∈ T .

Assumption 4.2 For t ∈ T ,

πE,t(St) = πE,t(Et, Ht).

Assumption 4.1 is weaker than the Markov assumption
as it does not consider the influence of the pursuers’ his-
tory Ht on the future. Assumption 4.2 guarantees that
the pursuers can simulate the evader’s action at time t
given onlyEt = r andHt. Moreover, the transition ma-
trix (Tt(Ht, πE))`′,` = P (Et+1 = `′|Et = `,Ht, πE)
is determined by πE . These two assumptions hold in
some common cases and we will discuss them further in
Section 5. With these two assumptions, the pursuers can
conduct simulation starting from time t given Et = r
and Ht instead of from the beginning of the game.
Moreover, (5) becomes

Q̂
π∗W ,πE
t (r,Ht, a) = Eπ

∗
W ,πE

[
n−1∑
v=0

γvYt+v+

γnQπ,πEt+n (Et+n, Ht+n, π(Ht+n))

∣∣∣∣Et = r,Ht, At = a

]
.

(6)
Then we can apply the heuristic search method

to compute (6) where the values of leaf nodes are
Qπ,πEt+n (Et+n, Ht+n, π(Ht+n)) and they are backed up
to the current state (Et = r,Ht) at the root. More de-
tails can be found in (Sutton and Barto 1998). In our
experiment, we approximate (6) using a heuristic to re-
duce computation time. We consider all possible paths
for pursuers from time t to t+ n− 1 (taking action a at
t) and then let pursuers follow the heuristic strategy π.
We run s independent simulations for each path and ob-
tain the average values of

∑
v≥0 γ

vYt+v for each path.
The path with the largest average values implements
the optimal strategy approximately and the largest aver-
age values is an approximation for (6). Note that when
n = 1, the method is actually the rollout algorithm. Af-
ter we compute (6), the optimal action at time t can be
obtained by (2) and (3).

The discussion above is to estimate the optimal strat-
egy for the pursuers when the the evader’s strategy is
given. In practice, the the evader’s strategy is not gen-
erally known but in Thompson Sampling, a candidate
strategy for the evader can be sampled from a (possi-
bly truncated) posterior over ΠE . The proposed algo-
rithm, including the discussed heuristics, is given Algo-
rithm 1. Note that in lines 7 and 15 in the algorithm,
we can apply any other strategy, e.g., one estimated us-
ing reinforcement learning, the local-max strategy, or
the global-max strategy. In the next section, we exam-
ine the empirical performance of Algorithm 1 through
simulation of pursuit-evasion on a grid and a modifica-
tion of the classic arcade game Pac-Man.

5 Numerical Results and Analysis
Random-Walk-with-Drift Evader
In this case, the class of evader strategies which we
consider is a random walk with drift towards the goal
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states. Each strategy in the class is indexed by two val-
ues: the evader’s goal node, G ∈ L, and the amount
of drift, ξ ∈ [0, 1]. With probability ξ, the evader takes
the action that moves the evader closest to the goal state
(with ties broken uniformly at random); otherwise, the
evader takes a random action with uniform probability.
For simplicity, we assume that the pursuers have prior
belief in a finite number of possible goals PG ⊂ L
and possible drifts PD ⊂ [0, 1]. Thus ΠE is a finite set
{π1, ..., πB}. However, the true goal (TG) and the true
drift (TD) of the evader may or may not belong to PG
and PD respectively.

The network is an m × m grid. The pursuers and
evader start in the opposite corners of the grid and pur-
suers know the evader’s initial location D0. Figure 1
shows the starting positions of all units and the evader’s
goal locations when m = 10, K = 3. The informant
region Dt is governed by both the pursuers’ vision with
radius v and information occasionally provided by an
informant. Whether information is obtained from the in-
formant at time t is determined by the random variable
Ot = 1∑t

v=1Xv>t
whereXv

iid∼ exp(λ), λ = 0.3 in our
experiment. If Ot = 1, the pursuers learn the evader’s
location — i.e., each of the locations in the quadrant
where the evader is currently located is appended to the
informant region. If Ot = 0, no information is obtained
from the informant at time t. For this episodic task, de-
fine T to be the (random) time point at which the game
ends (that is, at which either the evader is caught or
reaches the goal) and set the discount factor γ = 1.
As for the outcome, Yt = −1 for t = 0, 1, . . . , T − 1. If
the evader is caught by the pursuers at T , Yt = −1 and
if the evader reaches goal node G at T , YT = −100.
Thus in order to maximize cumulative reward, the pur-
suers must capture the evader as soon as possible and
keep the evader from reaching his goal.

Finally, a brief remark on the reasonableness of as-
sumptions (3.1), (4.1), (4.2). For Assumption (3.1), we
have PπW (Rt|Wt, Et = r, Yt−1, Ht−1, πE) = 1 for
∀ r ∈ Dt and ∀ πE ∈ ΠE , no matter if Ot is 0 or 1 (the
proof is simple and we omit it due to space). For As-
sumption (4.1), it is evident the future event after time
t is independent of the overall history St given the pur-
suers’ history Ht and the evader’s location Et. More-
over, the evader’s strategy only depends on his current
location so Assumption (4.2) holds.

As measures of performance, we consider the pro-
portion of episodes in which the evader is captured
(C1), the average time at which the pursuer is captured
(T ), and the proportion of episodes in which the evader
was captured via the shortest possible path given the
evader’s trajectory (C2).

The number of pursuers K is set to be 2 and grid
sizes m = 10, 20 are considered. For the following ex-
periments, we specify a uniform prior over ΠE and set
the vision radius v = 2 and TD = 0.75. If m = 10, we

set TG = 7 and if m = 20, we set TG = 14. We con-
sider the 12 experiment settings shown in Table 2. Ex-
periment A is a benchmark search strategy in which the
pursuers know the exact location of the evader and se-
lect their actions to minimize the distance to the evader
(with ties broken uniformly at random). In Experiment
B, pursuers make decisions according to minimax Q-
learning (Littman 1994) and know the exact location
and the goal of the evader. Experiments 1-10 use our
proposed method, with varying values of m, PG, PD,
and n (and with d = 0.9 in each case).

Figure 3 displays the proportion of times that the
evader’s strategy is sampled by Truncated Thompson
sampling over the course of an episode (and demon-
strates that this tends to increase to 1). Table 1 shows
that the pursuers are more likely to capture the evader
and capture times are shorter as the vision radius v in-
creases. Performance in Experiments 1-10 is better on
our measures of performance than in baseline Experi-
ments A and B. Experiments 1 and 6 show the supe-
rior performance of the proposed reinforcement learn-
ing method given the true strategy for the evader. (Note
that even the true optimal search strategy may not catch
the evader through the shortest path due to the random-
ness of the evader’s movement.) When multiple strate-
gies are given prior probability but the class of possi-
ble strategies still contains the evader’s strategy, perfor-
mance degrades relative to Experiments 1 and 6 but it
still superior to the baseline methods (Experiments 2-4
and 7-9). Finally, Experiments 5 and 10 show two cases
in which reasonable performance is attained even when
the evader’s strategy is not in the class of possible strate-
gies assumed by the pursuers.

Pac-Man
The game Pac-Man (Trueman ) can be seen as a pursuit-
evasion problem. In the game, there are four ghosts and
Pac-Man navigating a maze. The goal of the four ghosts
is to catch Pac-Man, while Pac-Man’s goal is to eat as
many dots as possible without being captured by the
ghosts. If Pac-Man eats one of the four lage power dots
near the corners of the maze, the ghosts are temporarily
slowed and vulnerable to being eaten by Pac-Man.

In order to further study our method, we implemented
a JavaScript version of Pac-Man in which the ghosts
(pursuers) could follow one of several pursuit strategies
(Figure 2 displays a screenshot of the game). ΠE con-
sists of three strategies we devised for Pac-Man. The
first is a pure random walk. The second is defined such
that when the distance between Pac-Man and one of the
ghosts is less than some value δ, the Pac-Man will move
in the opposite direction of the closest ghost; otherwise
Pac-Man will move uniformly at random. The third is
the same as the second except that when the distance
between Pac-Man and one of the ghosts is at least δ,
Pac-Man moves towards the closest Pac-Dot with prob-
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ability ξ and moves randomly otherwise. Thus, we write
ΠE = {π1, π2, πξ3}, where ξ ∈ [0, 1] is fixed.

Both Pac-Man and the ghosts know the location of
each dot and whether it has been eaten or not. Thus the
pursuers’ history Ht should include the dots’ history
(i.e., the location of each dot and whether it has been
eaten at each time up until t). Moreover, the Pac-Man
knows the ghosts’ locations exactly, while the ghosts
only have vision radius v. The informant region Dt for
the ghosts is determined by their vision and the dots’
history (as Pac-Man’s exact location is made known to
the ghosts when a dot is eaten). The outcome Yt is de-
fined similarly as that in Section 5.1 except there is not a
goal location for Pac-Man. Under these simulation set-
tings, assumptions (3.1), (4.1) and (4.2) still hold (the
proof of this is simple and we omit it here). In the ex-
periment, the ghosts’ prior on Pac-Man’s strategy is uni-
form on ΠE = {π1, π2, π0.8

3 }, whereas the true strategy
followed by Pac-Man is π1.0

3 ; thus the set of possible
strategies considered by the pursuers does not include
the true strategy.

As before, We compare our method with a search
strategy in which the ghosts know Pac-Man’s exact lo-
cation and select their actions to minimize the distance
to Pac-Man. Scores for Pac-Man and capture time (T )
are shown in Table 3. The results show that our method
performs slightly better than the benchmark strategy
even if the ghosts give zero prior weight to Pac-Man’s
true strategy. However, the strategy considered is the
true strategy for Pac-Man with some randomness and
it explains why our method performs well. (In practice,
including in ΠE strategies which include randomness
may improve robustness, as this may account for e.g.
accidental missteps by the evader.)

6 Discussion
We formalized the problem of pursuit and evasion and
developed a general framework for rigorously con-
structing and testing estimators of the evader’s strategy
and the pursuers optimal search strategy. We demon-
strated methods for estimating the evader’s strategy and
the optimal search strategy using a rollout-based ap-
proximation to the Q-function. The proposed estima-
tors performed well across a variety of settings though
in many settings greedy application of Thompson Sam-
pling (i.e., using the posterior mode for πE) performs
well. Because the proposed framework is Bayesian, it
can seemlessly incorporate prior knowledge which may
be especially beneficial in defense applications where
the behavior of the adversary has been studied exten-
sively.

There are a number of interesting directions for fu-
ture work. One direction is to add complexities to more
closely mimick real-life search problems. The abilities
of all search units could be expanded by providing new
actions in addition to movement. For example, the pur-

Figure 1: Schematic for starting positions of all units
and evader’s goal locations when m = 10, K = 3. The
red diamond is the starting evader’s location {99}. The
white squares are the starting locations of the pursuers
{0, 1, 10}. Green crosses are the possible locations of
the evader’s goal {0, 7, 70}.

Figure 2: A screen shot for the game Pac-Man.

suers might have a “scan” action which forces them to
remain still, but allows them to capture the evader if
they are k edges away instead of just 1. Another exam-
ple is a “dash” action which allows a pursuer to move
at a faster rate, but the ability to detect the evader is less
reliable. Another area of future research is prioritization
of capture zones. In real world applications, capturing
an evader could have negative side effects. For exam-
ple, someone carrying nuclear materials might detonate
on capture. Thus, it is important to try and capture the
evader in an area that will minimize damage. Incorpo-
rating this prioritization into the pursuer search strategy
could lead to interesting new methodologies.
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Figure 3: The proportion of the true evader’s strategy
sampled by Truncated Thompson sampling with differ-
ent truncating coefficients (d) under m = 10, n = 0,
TG = 7, TD = 0.75. The left side is for the setting
PG = {7, 70}, PD = {0.25, 0.75}, v = 2 while the
right side is for PG = {7, 70}, PD = {0.75}, v = 0.
500 games are simulated for each setting.

Algorithm 1 Thompson sampling for the pursuit-
evasion problem.

1: From domain knowledge, the pursuers are given
a class of strategies ΠE wherein lies the evader’s
strategy possibly. Also, each element πE ∈ ΠE has
a prior ρ(πE).

2: Observe H0 = (R0,W0, C0).
3: Initialize the prior probability vector of E0, p0 ∈

R|L|.
4: Initialize D0,πE = D0 ∩ ( ∪

l∈W0

Al)c ∩GcπE .

5: Initialize K(H0|πE) = P (E0 ∈ D0,πE ), for πE ∈
ΠE .

6: Sample π̃E ∼ ρ(πE).
7: Initialize n and p0(H0, π̃E) = F (ID0,π̃E

p0). Ob-
tain r = argmaxr∈L(p0(H0, π̃E))r. Compute (6)
with simulation for ∀ a and select A0 = a with the
largest values in (6) as the optimal action for pur-
suers.

8: for iteration t = 1, 2, . . . do
9: Observe (Rt,Wt, Ct).

10: pt(Ht−1, πE) = Tt(Ht−1, πE)pt−1(Ht−1, πE)
for πE ∈ ΠE .

11: Dt,πE = Dt ∩ ( ∪
l∈Wt

Al)c ∩GcπE , for πE ∈ ΠE .

12:

K(Ht|πE) =
∑

r∈Dt,πE

(pt(Ht−1, πE))rK(Ht−1|πE),

for πE ∈ ΠE .

13: p(πE |Ht) = K(Ht|πE)ρ(πE)∫
π′
E
∈πE

K(Ht|π′E)p(π′E)
, for πE ∈

ΠE .
14: Sample π̃E ∼ p(πE |Ht).
15: pt(Ht, π̃E) = F (IDt,π̃Ept(Ht−1, π̃E)) and

r = argmaxr∈L(pt(Ht, π̃E))r. Compute (6)
with simulation for ∀ a and select At = a with
the largest values in (6) as the optimal action for
pursuers.

16: end for

v 1 2
C1 0.71 0.90
T 11.76 10.84

Table 1: Performance of the pursuers with different vi-
sion radius when m = 10, PG = {7, 70}, PD =
{0.75}, TG = 7, TD = 0.75 and n = 1. 100 games
are simulated.

Exp. m PG PD n
A 10 ∗ ∗ ∗
B 10 {7} ∗ ∗
1 10 {7} {.75} 2
2 10 {7, 70} {.25, .75} 0
3 10 {7, 70} {.25, .75} 1
4 10 {7, 70} {.25, .75} 2
5 10 {8, 80} {.2, .5} 2
6 20 {14} {.75} 2
7 20 {14, 140} {.25, .75} 0
8 20 {14, 140} {.25, .75} 1
9 20 {14, 140} {.25, .75} 2

10 20 {12, 120} {.5, .9} 2
Exp. C1 T C2

A .72 11.08 (0.17) ∗
B .43 12.28 (0.26) ∗
1 1 10.24 (0.11) .95
2 .81 11.21 (0.19) .57
3 .89 10.71 (0.17) .78
4 .95 10.66 (0.14) .84
5 .89 10.73 (0.17) .78
6 1 21.60 (0.25) .88
7 .84 24.30 (0.44) .46
8 .90 23.22 (0.38) .52
9 .92 23.21 (0.48) .58

10 .84 24.23 (0.47) .50

Table 2: A summary of the simulation results for dif-
ferent settings when the truncation coefficient is 0.9.
Experiment A and B represent the benchmark and the
minimax Q-learning strategies respectively. n = 0 rep-
resents the heuristic strategy defined in Section 4. For
each setting, 100 and 50 games are simulated for m =
10 and m = 20 respectively. Standard errors are shown
in the brackets.

T Score
TTS 127 (8) 874 (57)

Benchmark 131 (10) 900 (59)

Table 3: The capture time and scores for the Truncated
Thompson Sampling method (d = 0.9) and the bench-
mark method in the Pac-Man game. For each setting, 50
games are simulated. Standard errors are shown in the
brackets.
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