
Ranked Reward: Enabling Self-Play Reinforcement Learning for Bin packing
Alexandre Laterre, Yunguan Fu, Mohamed Khalil Jabri, Alain–Sam Cohen

David Kas, Karl Hajjar, Hui Chen, Torbjørn S. Dahl, Amine Kerkeni, Karim Beguir
InstaDeep Ltd

2 Eastbourne Terrace, London, W2 6LG, United Kingdom
{a.laterre, y.fu, mk.jabri, as.cohen, d.kas, k.hajjar, h.chen, t.dahl, ak, kb}

Abstract

Adversarial self-play in two-player games has delivered im-
pressive results when used with reinforcement learning algo-
rithms that combine deep neural networks and tree search.
Algorithms like AlphaZero and Expert Iteration learn tabula-
rasa, producing highly informative training data on the fly.
However, the self-play training strategy is not directly ap-
plicable to single-player games. Recently, several practically
important combinatorial optimization problems, such as the
traveling salesman problem and the bin packing problem, have
been reformulated as reinforcement learning problems, in-
creasing the importance of enabling the benefits of self-play
beyond two-player games. We present the Ranked Reward
(R2) algorithm which accomplishes this by ranking the re-
wards obtained by a single agent over multiple games to cre-
ate a relative performance metric. Results from applying the
R2 algorithm to instances of a two-dimensional and three-
dimensional bin packing problems show that it outperforms
generic Monte Carlo tree search, heuristic algorithms and inte-
ger programming solvers. We also present an analysis of the
ranked reward mechanism, in particular, the effects of prob-
lem instances with varying difficulty and different ranking
thresholds.

Introduction and Motivation
Reinforcement learning (RL) algorithms that combine neural
networks and tree search have delivered outstanding suc-
cesses in two-player games such as go, chess, shogi, and
hex. One of the main strengths of algorithms like AlphaZero
[13] and Expert Iteration [1] is their capacity to learn tabula
rasa through self-play. Historically, RL with self-play has
also been successfully applied to the game of Backgammon
[14]. Using this strategy removes the need for training data
from human experts and always provides an agent with a
well-matched adversary, which facilitates learning.

While self-play algorithms have proven successful for two-
player games, there has been little work on applying simi-
lar principles to single-player games/problems [10]. These
games include several well-known combinatorial problems
that are particularly relevant to industry and represent real-
world optimization challenges, such as the traveling salesman
problem (TSP) and the bin packing problem (BPP).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper describes the Ranked Reward (R2) algorithm
and results from its application to 2D and 3D BPP formulated
as a single-player Markov decision process (MDP). R2 uses a
deep neural network to estimate a policy and a value function,
as well as Monte Carlo tree search (MCTS) for policy im-
provement. In addition, it uses a reward ranking mechanism
to build a single-player training curriculum that provides
advantages comparable to those produced by self-play in
competitive multi-agent environments.

The R2 algorithm offers a new generic method for pro-
ducing approximate solutions to NP-hard optimization prob-
lems. Generic optimization approaches are typically based
on algorithms such as integer programming [7], that provide
optimality guarantees at a high computational expense, or
heuristic methods that are lighter in terms of computation
but may produce unsatisfactory suboptimal solutions. The
R2 algorithm outperforms heuristic approaches while scaling
better than optimization solvers. We present results showing
that, on 2D and 3D BPP, R2 performs better than the same
deep RL algorithm without a ranked reward mechanism and
also better than MCTS [5], the Lego heuristic algorithm [8]
and linear programming with barrier functions [7]. We also
analyze the reward ranking mechanism. In particular, we
evaluate different ranking thresholds for deciding whether an
episode/game should be considered a win or a loss and the
effects on the overall learning process.

In this paper, we start by summarizing the current state-of-
the-art in deep learning for games with large search spaces.
Then, a single-player MDP formulation of the bin packing
problem is presented. Later, we describe the R2 algorithm
using deep reinforcement learning and tree search along with
a reward ranking mechanism. The two next sections present
our experiments and results, and discuss the implications of
using different reward ranking thresholds. Finally, the last
section summarizes current limitations of our algorithm and
future research directions.

Related Work
Combinatorial optimization problems are widely studied in
computer science and mathematics. A large number of them
belongs to the NP-hard class of problems. For this reason,
they have traditionally been solved using heuristic methods
[11, 4, 6]. However, these approaches may need hand-crafted
adaptations when applied to new problems because of their

problem-specific nature.
Deep learning algorithms potentially offer an improvement

on traditional optimization methods as they have provided
remarkable results on classification and regression tasks [12].
Nevertheless, their application to combinatorial optimization
is not straightforward. A particular challenge is how to rep-
resent these problems in ways that allow the deployment of
deep learning solutions. One way to overcome this challenge
was introduced by Vinyals et al. [15] through Pointer Net-
works, a neural architecture representing combinatorial op-
timization problems as sequence-to-sequence learning prob-
lems. Early Pointer Networks were trained using supervised
learning methods and yielded promising results on the TSP
but required datasets containing optimal solutions which can
be expensive, or even impossible to build. Using the same
network architecture, but training with actor-critic methods,
removed this requirement [3].

Unfortunately, the constraints inherent to the bin packing
problem prohibit its representation as a sequence in the same
way as the TSP. In order to get around this, Hu et al. [9]
combined a heuristic approach with RL to solve a 3D version
of the problem. The main role of the heuristic is to transform
the output sequence produced by the RL algorithm into a fea-
sible solution so that its reward signal can be computed. This
technique outperformed previous well-designed heuristics.

Deep Learning with Tree Search and Self-Play
Policy iteration algorithms that combine deep neural net-
works and tree search in a self-training loop, such as Alp-
haZero [13] and Expert Iteration [1], have exceeded human
performance on several two-player games. These algorithms
use a neural network with weights θ to provide a policy
pθ(·|s) and/or a state value estimate vθ(s) for every state s
of the game. The tree search uses the neural network’s output
to focus on moves with both high probabilities according to
the policy and high-value estimates. The value function also
removes any need for Monte Carlo roll-outs when evaluating
leaf nodes. Therefore, using a neural network to guide the
search reduces both the breadth and the depth of the searches
required, leading to a significant speedup. The tree search, in
turn, helps to raise the performance of the neural network by
providing improved MCTS-based policies during training.

Self-play allows these algorithms to learn from the games
played by both players. It also removes the need for po-
tentially expensive training data, often produced by human
experts. Such data may be biased towards human strategies,
possibly away from better solutions. Another significant ben-
efit of self-play is that an agent will always face an opponent
with a similar performance level. This facilitates learning by
providing the agent with just the right curriculum in order
for it to keep improving [2]. If the opponent is too weak,
anything the agent does will result in a win and it will not
learn to get better. If the opponent is too strong, anything the
agent does will result in a loss and it will never know what
changes in its strategy could produce an improvement. The
main contribution of the R2 algorithm is a relative reward
mechanism for single-player games, providing the benefits
of self-play in single-player MDPs and potentially making
policy iteration algorithms with deep neural networks and

tree search effective on a range of combinatorial optimization
problems.

Bin Packing as a Markov Decision Process
The classical bin packing problem involves packing a set
of items into fixed-sized bins in a way that minimizes a
cost function, e.g. the number of bins required. The work
presented here considers a variation of the problem where
the objective is to pack a set of items into a single bin while
minimizing its surface, like in the work of Hu et al. [9, 8].

Bin Packing Problem

The problem involves a set of N cuboid shaped items
I = {(li, wi, hi)}Ni=1 where li, wi and hi denote the length,
width and height of item i. Items can be rotated of 90◦ along
x, y and z axis, and oi ∈ {0, 1, 2, 3, 4, 5} denotes how the
i-th item is rotated. The bottom-left-front corner of the i-th
item placed inside the bin is denoted by (xi, yi, zi) with the
bottom-left-front corner of the bin set to (0, 0, 0). The prob-
lem also includes additional constraints, complexifying the
environment and reducing the number of available positions
in which an item can be placed. In particular, items may not
overlap and an item’s center of gravity needs physical sup-
port. A solution to this problem is a sequence of quintuplets
((i, xi, yi, zi, oi))

N
i=1 where all items are placed inside the

bin while satisfying all the constraints. The objective is then
to minimize the surface of the minimal bin which contains
all the items. The problem can also be reduced to 2D, where
the bin is of shape (W,H) and each item have only two pos-
sibilities of orientation. The objective is then to minimize the
perimeter of the minimal bin.

Markov Decision Process

As opposed to Hu et al. [9, 8], which address the BPPs via
sequence-to-sequence methods, we formulate the problem as
an MDP, where state encodes all the items and their current
placement if placed and action encodes the possible positions
and orientations of the unplaced items. The goal of the agent
is to select actions in a way that minimizes the cost. This
is reflected in the design of the reward rt. As defined in
Equation 1, all non-terminal states receive a reward of 0
while terminal states receive a reward function of the final
solution’s quality.

rt =


C∗

C
, if all items have been placed,

0, otherwise,
(1)

where costs C and C∗ denote respectively the cost of the
minimal bin at terminal state and of an ideal cube (or square)
whose volume (or area) equals to the sum of the volumes
(or areas) of all items. The definition of the cost C of a bin
(L,W,H) is:

C =

{
LW +WH + LH, 3D,
W +H, 2D.

The R2 Algorithm
When using self-play in two-player games, a funny agent
faces a perfectly suited adversary at all times because no
matter how weak or strong it is, the opponent always provides
just the right level of opposition for the agent to learn from
[2]. The R2 algorithm reproduces the benefits of self-play for
generic single-player MDPs by reshaping the rewards of a
single agent according to its relative performance over recent
games. A detailed description is given by Algorithm 1. Below
we present the ranking mechanism and network model used
in detail.

Ranked Rewards
The ranked reward mechanism compares each of the agent’s
solutions to its recent performance so that no matter how
good it gets, it will have to surpass itself to get a positive
reward. In particular, R2 uses a size-limited buffer B to record
recent MDP rewards and calculate a threshold value rα based
on a given percentile α ∈ (0, 100), e.g., the threshold value
r75 is the MDP reward value closest to the 75th percentile
of the MDP rewards in the buffer. The agent’s MDP reward
RN−1 is reshaped to a ranked reward z ∈ {±1} according
to whether or not it surpasses the threshold value:

z =


1 rN−1 > rα or rN−1 = 1

−1 rN−1 < rα
b ∼ B rN−1 = rα and rN−1 < 1

, (2)

where z = b is sampled from a binary random variable B
such that when r = rα, z equals to ±1 randomly. This way,
the player is provided with samples of recent games labeled
relatively to the agent’s current performance, providing infor-
mation on which policies will improve its present capabilities.
The random variable is used to break ties and assure constant-
learning. Indeed, if we set z to 1 when r = rα < 1, the agent
does not have an incentive to beat the threshold since it can
obtain positive rewards by staying at its current performance
level. The ranked rewards are then used as targets for the
value estimation neural network and as the value to backup
for terminal nodes during MCTS.

Neural Network Architecture
The input of the neural network consists of the set of feasible
actions where each action consists of features describing the
chosen item, id and orientation, as well as the placement
location. The network architecture satisfies two critical re-
quirements. First, it is permutation invariant, i.e. any permu-
tation of the input set results in the same output permutation.
Second, the model is able to process input sets of any size
since the size of the available action space varies as the items
are being placed.

Each action in the action space is fed independently into
a feed-forward network taking fixed-size inputs. The result-
ing feature-space embeddings are aggregated using pooling
operations. The final output is obtained by combining these
with the embeddings through further non-linear processing
to obtain the agent’s policy and its state-value estimate.

Algorithm 1: R2
Input: a percentile α and a mini-batch size b
Initialize fixed size buffers D = {} and B = {}
Initialize parameters θ0 of the neural network, fθ0
for k = 0, 1, . . . do

for episode = 1, . . . , M do
Sample an initial state s0
for t = 0, . . . , N-1 do

Perform a Monte Carlo tree search
consisting of S simulations guided by fθk

Extract MCTS-improved policy π(·|st)
Sample action at ∼ π(·|st)
Take action at and observe new state st+1

end
Compute MDP reward rN−1 and store it in B
Compute threshold rα based on the MDP
rewards in B

Reshape to ranked reward z as explained in (2)
Store all triplets (st, π(· | st), z) in D for
t = 0, . . . , N − 1

end
θ ← θk
for step = 1, . . . , J do

Sample mini-batch J of size b uniformly from
from D

Update θ by performing one optimization step
using mini-batch J

end
θk+1 ← θ

end

Experiments and Results
To validate our approach and evaluate its effectiveness, we
first considered 2D and 3D BPP with 10 items. The items
were generated by repeatedly dividing a square/cube of size
10. The process for generating items randomly is presented in
detail in Appendix . The training process is as follows: at each
iteration, 50 problems are generated and solved by R2 with
a reward buffer of size 250, used to define the threshold rα.
All MCTS instances perform 300 simulations per move. The
reshaped rewards alongside the MCTS-improved policies
are stored in a dataset and used during training. The neural
network is trained by gradient descent (Adam) using mini-
batches of size 32, uniformly sampled from the last 500
games. At each iteration, 50 steps of gradient descent are
performed. Each experiment ran on a NVIDIA Tesla V100
GPU card for up to two days.

Ranked Reward with Different Thresholds
We first compared the performance of the R2 algorithm with
three different α-percentiles: 50, 75 and 90. We also included
a version using the MDP reward directly without ranking as
the target for the value function estimate. The learning curves
are presented in Figure 1 for games with 10 items in 2D and
3D. R2 with an α-percentile of 75% achieved the best training
performances in both cases. Regardless of the threshold, R2
outperforms Rank-Free in both mean rewards and optimality

a Mean rewards for 2D BPPs b Optimality percentages for 2D BPPs

c Mean rewards for 3D BPPs d Optimality percentage for 3D BPPS

Figure 1: Mean rewards and optimality percentages of R2 on 2D and 3D bin packing problems with percentile of 50 (blue), 75 (green), 90
(purple) and Rank-Free (red).

percentages with a faster convergence. We later evaluated the
different threshold on problems with 20, 30 and 50 items. On
these larger problems, the 50% threshold produced the best
final performance. The details of these evaluations are given
in Appendix.

Comparison with Other Methods
To evaluate the performance of R2, we compared Rank-
75% with a set of baselines as comparison: trained neural
network agent without MCTS; a supervised agent; a plain
MCTS agent using Monte-Carlo rollouts for state-value es-
timation [5]; the Lego heuristic search algorithm [9, 8]; and
a solver agent using integer programming [7] (see appendix
for further details). We used 100 games as the test set for all
the algorithms.

As shown in Figure 2a and Figure 2b, R2 always outper-
formed its alternatives. Especially, we can observe that the
trained network performed at least as good as the pure MCTS
algorithm and Lego heuristic, which proves that the architec-
ture of the neural network is well designed and it is capable of
learning good policies. With the help of specifically designed
training data, the supervised agent achieved also a superior
performance compared to the pure MCTS and Lego heuristic
on small instances but the performance decreased quickly as
the size of problems increased. Concerning the Gurobi solver,

it was given five minutes, around the same amount of time
that R2 algorithm used. The solver was able to find optimal
solutions for problems with 10 items, but for problems with
more items, sometimes feasible solutions could barely be
found. Hence the rewards vanished to zero (which are not
shown in the figures). Note that the algorithm performed bet-
ter in 2D with 50 items since the total volume is fixed and
the items sizes are reduced. Therefore the problems become
simpler.

Furthermore, we tested the trained network with different
percentiles on the same set of problems to compare the gener-
alization ability. The results are presented in Appendix and
we found that although Rank-75% achieved better training
performance, Rank-50% was more robust and had even a bet-
ter test performance. For illustration, we provide in Figure 3
a visualization of solutions given by Lego and Rank-75% in
2D and 3D.

Discussion
In this section, we present our analyzes of two critical facets
of learning with ranked rewards. The first if the issue of
constructing an effective ranking when the agent plays game
instances with different level of difficulty. The second is the
issue of identifying an optimal threshold and analyzing the

a 2D BPPs with a total area of items equals to 900

b 3D BPPs with a total volume of items equals to 27000

Figure 2: Performance on 2D and 3D games for Rank-75% and other algorithms.

potential benefits of, and problems with, high and low ranking
thresholds.

Ranking on Games of Different Difficulty
When using self-play in two-player games, the sequence of
actions which lead to victory is superior to the sequence
leading to a loss. This pushes the agent’s policy in the direc-
tion of the winner’s actions. However, when using ranked
reward, there is no direct relationship between the sequences
of actions of the agent on two different games. The agent
might have performed poorly on one game because the diffi-
culty level of that particular game was higher than most other
games. This effect introduces significant amounts of noise to
the reward signal.

A workaround would be to include the difficulty level
in the ranking process, such that poor game outcomes still
obtain good rankings for complex game instances. However,
this approach would require access to the difficulty level of
the games, which is unlikely to happen. A second approach
would incorporate randomness, e.g. additional noises into
the prior distribution of the policy neural network, into the
agent’s behavior while making it play the same game multiple
times. By this mechanism, we can assure comparability of
the game outcomes and correlations between these and the
agents’ policies. We tried the second approach on the bin
packing problem but no further improvement was noticed

due to the relative similarity of the difficulty level of the
games1. The Ranked Reward algorithm as described in this
paper is therefore appropriate for problems in which different
problem instances have relatively the same difficulty level.
For complex problems in which difficulty could vary widely
from one instance to another, R2 would certainly benefit from
applying the mechanism above to ensure comparability in the
game outcomes.

The Effects of Ranking Thresholds on Learning
Although the performances of R2 are relatively robust to the
percentile used, we studied the difference of learning perfor-
mances when using other percentile values. We analyzed and
interpreted the evolution of the reward distribution over time
for four different cases, rank-free and α values of 50%, 75%
and 90% on 2D BPP with 10 items, as shown in Figure 4.

Figures 4a and 4b show that, although better solutions
dominate, optimal solutions are not picked up convincingly
in the rank-free and ranked 50% cases. In the rank-free case,
the difference between the optimal MDP reward 1.0 and the
nearest sub-optimal MDP reward 0.96 is relatively small,

1The empirical reward distribution of the Lego heuristic cor-
responds to a bell-shape with a small standard deviation, which
suggests that different games have relatively the same difficulty
level.

a Lego b Rank-75% c Lego d Rank-75%

Figure 3: Visualization of the solution by Lego and Rank-75% in 2D and 3D.

a Rank-Free b Ranked-50%

c Ranked-75% d Ranked-90%

Figure 4: Evolution of the reward proportions with different percentiles α during training in 2D BPPs. Dark blue denotes the maximum reward
of 1 and red denotes the minimum reward of 0. Ranked (75%) achieves better performance and stability than others.

potentially making it difficult to distinguish between them
effectively. In the ranked 50% case, Figure 4c, all the games
in the top half of the buffer receive a ranked reward of 1.0.
This provides positive feedback to a significant number of
sub-optimal games and it is potentially this effect that makes
the convergence slow in this case. In the ranked 75% case,
only the top quarter of the buffer receive a ranked reward of
1.0. This effectively picks up the optimal solutions and ex-
pels sub-optimal solutions from the buffer almost completely.
The ranked 90% case, Figure 4d, also converges quickly, but
less quickly than the ranked 75% case. In this case, a smaller
number of good solutions will receive positive feedback, giv-

ing the learning a much smaller reward signal initially. This
could be the cause of the slower convergence rate, though
optimal solutions always receive a positive reward.

The impact of the percentile α on the performance fol-
lows our intuitive understanding of human learning. Setting
the threshold at 50% is equivalent to making the agent play
against an opponent of the same level, as it has a prede-
termined 50% chance of winning. Increasing the percentile
value corresponds to improving the opponent’s level, as it
makes it harder to obtain a reward of 1. In our context, when
the percentile changes from 50% to 75%, the probability
of winning falls to 25%. In general, higher thresholds lead

to faster learning, i.e., the proportion of high-reward games
increases faster. However, Figure 4d shows that, for a thresh-
old of 90%, a larger residue of low-reward games remains.
Although this effect is stronger for 3D problems. These in-
stabilities could explain the weaker final performance of the
higher thresholds. To explain this, we can hypothesize that if
the opponent is too strong, the learning process will suffer as
the agent can very rarely affect the game outcome even when
it plays significantly better than its current mean performance
level.

Conclusion and Future Work
The results presented in this work show that R2 outperforms
the selected alternatives both on the 2D and 3D bin packing
problems with 10, 20, 30 and 50 items. In particular, the
capacity of the algorithm to outperform its competitors in
large instances makes it suitable for solving real-life problem
instances.

By ranking the rewards obtained over recent games, R2
provides a threshold-based relative performance metric. This
enables it to reproduce the benefits of self-play for single-
player games, removing the requirement for training data and
providing a well-suited adversary throughout the learning
process.

Consequently, R2 outperforms the selected alternatives as
well as its rank-free counterpart, improving on the perfor-
mance of the best alternative, the Gurobi solver, by more than
6% when using a threshold value of 75%. As the number of
items grows, the difference can reach up to 15%. An analysis
of the effects of different percentiles α has shown that higher
thresholds perform better up to a point after which learning
becomes unstable and performance decreases.

For now, our implementation of the bin packing problem
only considers problems that do not contain any spare space,
i.e., square packings with no gaps. Even though this helps us
to evaluate the algorithm’s performance, it introduces an un-
desirable bias. Future research should evaluate the algorithm
on a wider range of problems, for which the optimal solution
is unknown and not necessarily square.

The R2 algorithm is potentially applicable to a wide range
of optimization tasks, though it has so far been used only on
the bin packing. In the future, we will consider other opti-
mization problems such as the Traveling Salesman Problem
to further evaluate its effectiveness.

References
[1] Thomas Anthony, Zheng Tian, and David Barber.

Thinking fast and slow with deep learning and tree
search. In Advances in Neural Information Processing
Systems (NIPS) 30, pages 5360–5370. 2017.

[2] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya
Sutskever, and Igor Mordatch. Emergent complexity
via multi-agent competition. arXiv:1710.03748, 2017.

[3] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad
Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. CoRR,
abs/1611.09940, 2016.

[4] V. Boyer, M. Elkihel, and D. El Baz. Heuristics for
the 0–1 multidimensional knapsack problem. European
Journal of Operational Research, 199(3), 2009.

[5] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lu-
cas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton. A survey of Monte
Carlo tree search methods. IEEE Transactions on Com-
putational Intelligence and AI in Games, 4(1):1–43,
2012.

[6] Alberto Colorni, Marco Dorigo, Francesco Maffioli,
Vittorio Maniezzo, Giovanni Righini, and Marco Tru-
bian. Heuristics from nature for hard combinatorial
optimization problems. International Transactions in
Operational Research, 3(1):1–21, 1996.

[7] LLC Gurobi Optimization. Gurobi optimizer reference
manual, 2018.

[8] Haoyuan Hu, Lu Duan, Xiaodong Zhang, Yinghui Xu,
and Jiangwen Wei. A multi-task selected learning ap-
proach for solving new type 3D bin packing problem.
arXiv:1804.06896, 2018.

[9] Haoyuan Hu, Xiaodong Zhang, Xiaowei Yan, Longfei
Wang, and Yinghui Xu. Solving a new 3D bin pack-
ing problem with deep reinforcement learning method.
arXiv:1708.05930, 2017.

[10] Thomas M. Moerland, Joost Broekens, Aske Plaat, and
Catholijn M. Jonker. A0C: Alpha zero in continuous
action space. arXiv:1805.09613, 2018.

[11] César Rego, Dorabela Gamboa, Fred Glover, and Colin
Osterman. Traveling salesman problem heuristics:
Leading methods, implementations and latest advances.
European Journal of Operational Research, 211(3):427–
441, 2011.

[12] Jürgen Schmidhuber. Deep learning in neural networks:
An overview. Neural Networks, 61:85–117, 2015.

[13] David Silver, Thomas Hubert, Julian Schrittwieser,
Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, Timothy P. Lillicrap, Karen Simonyan, and
Demis Hassabis. Mastering chess and shogi by self-
play with a general reinforcement learning algorithm.
arXiv:1712.01815, 2017.

[14] Gerald Tesauro. TD-gammon, a self-teaching backgam-
mon program, achieves master-level play. Neural Com-
putation, 6(2):215–219, 1994.

[15] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
Pointer networks. In Advances in Neural Information
Processing Systems (NIPS) 28, page 2692–2700, Mon-
treal, Quebec, Canada, December 7-12 2015.

Generation of Bin Packing Problems
Due to the lack of existing datasets for the bin packing problems, we generated instances artificially via splitting a cube (or
square) randomly. The detailed algorithm is given in Algorithm 2. Especially, the information of optimal solution is not used
in the definition of the problem and the definition of the final reward is applicable for problems without the knowledge of the
optimal solution.

Algorithm 2: Bin Packing Problem Generator
Input :Number of item N , size of optimal bin (L,W,H), random seed s.
Output :Item set I
Function BPP GENERATOR(N,L,W,H, s):

Initialize the items list I = {(L,W,H)}.
while |I| < N do

Pop an item randomly from I by the item’s volume.
Choose an axis randomly by the length of edge.
Choose a position randomly on the axis by the distance to the center of edge.
Split the item into two and add them into I.

end
return I

Benchmark Algorithms

Algorithm 3: Lego Heuristic Algorithm (3D)

Input :Items I = {(li, wi, hi)}Ni=1.

Function LEGO(I):
for t← 0 to N − 1 do

if t = 0 then
Choose the item of largest volume, i.e. i0 = argmax

i
liwihi.

Rotate it such that li0 ≥ wi0 ≥ hi0 and place it at (0, 0, 0).
else

Select the item of the action which minimizes the percentage of the wasted space in the minimal bin, i.e.
it = argmin

(i,x,y,z,r)

Vplaced items

Vbin
.

Select the action which minimized the surface, i.e. (xit , yit , zit , rit) = argmin
(it,x,y,z,r)

Sbin.

Perform the action (it, xit , yit , zit , rit).
end

end
return

Details of the benchmark algorithms
• Plain MCTS The plain MCTS agent used 300 simulations per move just like R2 and executed a single Monte Carlo roll-out

per simulation to estimate state values.
• Lego Heuristic The Lego algorithm worked sequentially by first selecting the item minimizing the wasted space in the bin,

and then selecting the orientation and position of the chosen item to minimize the bin size.
• Supervised Learning The BPP instances were generated with a known optimal solution for each problem, we designed a

Lego-like heuristic algorithm defining a corresponding optimal sequence of actions {ai}0≤i≤N−1 for such solution. We used
the state-action pairs (si, ai) to train the policy-head of the R2 neural network as a one-class classification problem: given
state si.

• Gurobi Solver With exactly the same constraints as reinforcement learning environments, we wrote two mathematical models
for 2D and 3D problems and used Gurobi solver to solve them. Precisely, all constraints are linear and the objective is linear
for 2D and quadratic for 3D. Solver were given 8 CPUs and five minutes in total (roughly the same amount of time as R2
agents with MCTS) and it reported the best found feasible solution.

a 2D BPPs with a total area of items equals to 900

b 3D BPPs with a total volume of items equals to 27000

Figure 5: Performance on 2D and 3D games for R2 networks with different percentiles.

Comparison of the Results for Different Threshold Values
Here we present the performance of the networks trained with the R2 algorithm, without doing MCTS simulations.

ALGO
ITEMS 10 20 30 50

RANK-FREE 0.938(±0.030) 0.946(±0.020) 0.952(±0.021) 0.960(±0.013)
RANK-50% 0.953(±0.027) 0.948(±0.020) 0.954(±0.015) 0.960(0.016)
RANK-75% 0.926(±0.064) 0.933(±0.044) 0.940(±0.040) 0.952(±0.028)
RANK-90% 0.950(±0.037) 0.944(±0.024) 0.948(±0.027) 0.958(±0.016)

Table 1: Mean rewards on 2D BPPs with a total area of items equals to 900.

ALGO
ITEMS 10 20 30 50

RANK-FREE 0.807(±0.061) 0.769(±0.052) 0.770(±0.039) 0.762(±0.037)
RANK-50% 0.902(±0.058) 0.850(±0.032) 0.844(±0.030) 0.838(0.034)
RANK-75% 0.903(±0.060) 0.840(±0.030) 0.815(±0.044) 0.816(±0.041)
RANK-90% 0.871(±0.060) 0.832(±0.034) 0.815(±0.044) 0.817(±0.037)

Table 2: Mean rewards on 3D BPPs with a total volume of items equals to 27000.

	Introduction and Motivation
	Related Work
	Deep Learning with Tree Search and Self-Play

	Bin Packing as a Markov Decision Process
	Bin Packing Problem
	Markov Decision Process

	The R2 Algorithm
	Ranked Rewards
	Neural Network Architecture

	Experiments and Results
	Ranked Reward with Different Thresholds
	Comparison with Other Methods

	Discussion
	Ranking on Games of Different Difficulty
	The Effects of Ranking Thresholds on Learning

	Conclusion and Future Work
	Generation of Bin Packing Problems
	Benchmark Algorithms
	Comparison of the Results for Different Threshold Values

