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Abstract

In this paper we consider the problem of how a reinforcement
learning agent that is tasked with solving a set of reinforce-
ment learning problems (a set of Markov decision processes)
can use knowledge acquired early in its lifetime to improve
its ability to solve novel but related problems. This is a sit-
uation that presents itself often in games that are split into
stages or levels, where early levels are meant to get the player
accustomed to the general game mechanics.
In this work, we focus on the question of how an agent should
explore when faced with a new environment. We show that
the search for an optimal exploration strategy can itself be
modeled as a reinforcement learning problem, albeit with a
different timescale. We conclude with experiments, in dis-
crete and continuous control problems, that demonstrate the
benefits of using the proposed framework for optimizing an
exploration strategy to improve the performances of existing
RL methods.

Introduction
One approach many games take to show the player the rules
and mechanics of the game is to introduce him to simple
introductory levels. The levels, then, turn progressively more
difficult until the full scope of the game is reached. A human
player will naturally leverage the knowledge obtained during
the introductory stages to adapt to new, but related, levels.

If we consider the player to be a reinforcement learning
agent and each level or stage in a game as a separate task in
a set of related tasks, we quickly notice that standard rein-
forcement learning (RL) methods lack this ability of adapta-
tion. When faced with a new task—a new Markov decision
process (MDP)—they typically start from scratch, initially
making decisions randomly to explore and learn about the
current problem they face.

The problem of creating agents that can leverage previous
experiences to solve new problems is called lifelong learn-
ing or continual learning, and is related to the problem of
transfer learning. In this paper we focus on one aspect of
lifelong learning relevant to games: when faced with a se-
quence of MDPs sampled, how can a reinforcement learn-
ing agent learn an optimal policy for exploring new prob-
lems? Specifically, we do not consider the question of when
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an agent should explore or how much an agent should ex-
plore, which is a well studied area of reinforcement learn-
ing research, (Tang et al. 2016; Martin et al. 2017; Azar,
Osband, and Munos 2017; Garivier and Moulines 2011;
Strehl 2008). Instead, we study the question of, given that
an agent is going to explore, which action should it take?

After formally defining the problem of searching for an
optimal exploration policy, we show that this problem can
itself be modeled as an MDP. This means that the task of
finding an optimal exploration strategy for a learning agent
can be solved by another reinforcement learning agent that is
solving a new meta-MDP. This meta-MDP operates at a dif-
ferent timescale from the RL agent solving specific MDPs—
one episode of the meta-MDP corresponds to an entire life-
time of the RL agent. From the perspective of games, a
meta-MDP episode corresponds to learning to solve a par-
ticular level. This difference of timescales distinguishes our
approach from previous meta-MDP methods for optimizing
components of reinforcement learning algorithms, (Thomas
and Barto 2011; Liu et al. 2012; van Seijen et al. 2017;
Laroche et al. 2017; Fernandez and Veloso 2006). Although
the idea of learning an optimal exploration policy as a sep-
arate MDP has been studied in (Şimşek and Barto 2006),
there are keys differences with our work, namely: we con-
sider the scenario where an agent has to solve a series of
distinct tasks instead of a single task, we propose a different
objective, and show that our methods scales to continuous
control tasks.

We contend that using random action selection dur-
ing exploration—as is common when using Q-learning,
(Watkins and Dayan 1992), Sarsa, (Sutton and Barto 1998),
and DQN, (Mnih et al. 2015)—ignores useful information
from the agent’s experience with previous similar MDPs that
could be leveraged to direct exploration. In our work, we
separate the policies that define the agent’s behavior into an
exploration policy (which governs behavior when the agent
is exploring) and an exploitation policy (which governs be-
havior when the agent is exploiting).

In this paper we make the following contributions: 1)
we present an alternative definition from the one given by
Şimşek and Barto (2006) of what it means to search for an
optimal exploration policy, 2) we prove that this problem
can be modeled as a new MDP, and describe one framework
for solving this meta-MDP, and 3) we present experimental



results that show the benefits of our approach in discrete and
continuous control tasks. Although an optimal exploration
policy is only one of the components that can be learned
from earlier stages of a game (along with deciding when to
explore, how to represent data, how to transfer models, etc.),
it provides one key step towards agents that leverage prior
knowledge to solve a whole set of challenging problems.

Related Work
There is a large body of work discussing the problem of
how an agent should behave during exploration when faced
with a single MDP. Simple strategies, such as ε-greedy with
random action-selection, Boltzmann action-selection or soft-
max action-selection, make sense when an agent has no
prior knowledge of the problem that it is facing. The perfor-
mance of an agent exploring with random action-selection
reduces drastically as the size of the state-space increases
(Whitehead 1991). The performance of Boltzmann or soft-
max action-selection hinges on the accuracy of the action-
value estimates. When these estimates are poor (e.g., early
during the learning process), it can have a drastic nega-
tive effect on the overall performance of the agent. More
sophisticated methods search for subgoal states to define
temporally-extended actions, called options, that explore the
state-space more efficiently, (Mcgovern and Barto 2001;
Goel and Huber 2003), use state-visitation counts to encour-
age the agent to explore states that have not been frequently
visited, (Tang et al. 2016; Martin et al. 2017), or use approx-
imations of a state-transition graph to exploit structural pat-
terns, (Mahadevan 2005; Machado, Bellemare, and Bowling
2017).

Recent research concerning exploration has also taken the
approach of adding an exploration “bonus” to the reward
function. VIME (Houthooft et al. 2016) takes a Bayesian
approach by maintaining a model of the dynamics of the
environment, obtaining a posterior of the model after tak-
ing an action, and using the KL divergence between these
two models as a bonus. The intuition behind this approach
is that encouraging actions that make large updates to the
model allows the agent to better explore areas where the cur-
rent model is inaccurate. Pathak et al. (2017) define a bonus
in the reward function by adding an intrinsic reward. They
propose using a neural network to predict state transitions
based on the action taken and provide an intrinsic reward
proportional to the prediction error. The agent is therefore
encouraged to make state transitions that are not modeled
accurately. Another relevant work in exploration was pre-
sented by Fernandez and Veloso (2006), where the authors
propose building a library of policies from prior experience
to explore the environment in new problems more efficiently.
These techniques are useful when an agent is dealing with a
single MDP or class of MDPs with the same state-transition
graph, however they do not provide a means to guide an
agent to explore intelligently when faced with a novel task
with different dynamics.

The idea of meta-learning, or learning to learn, has also
been a recent area of focus. Andrychowicz et al. (2016)
proposed learning an update rule for a class of optimiza-
tion problems. Given objective function f and parameters

θ, the authors proposed learning a model, gφ, such that the
update to parameters θk, at iteration k are given according
to θk+1 = θk + gφ(∇f(θk)). RL has also been used in
meta-learning to learn efficient neural network architectures
(Rosenbaum, Klinger, and Riemer 2017). However, even
though one can draw a connection to our work through meta-
learning, these methods are not concerned with the problem
of exploration.

In the context of RL, a similar idea can be applied by
defining a meta-MDP, i.e., considering the agent as part of
the environment in a larger MDP. In multi-agent systems,
Liu et al. (2012) considered other agents as part of the en-
vironment from the perspective of each individual agent.
Thomas and Barto (2011) proposed the conjugate MDP
framework, in which agents solving meta-MDPs (called
CoMDPs) can search for the state representation, action rep-
resentation, or options that maximize the expected return
when used by an RL agent solving a single MDP.

Despite existing meta-MDP approaches, to the best of our
knowledge, ours is the first to use the meta-MDP approach
to specifically optimize exploration for a set of related tasks.

Background
A Markov decision process (MDP) is a tuple, M =
(S,A, P,R, d0), where S is the set of possible states of the
environment, A is the set of possible actions that the agent
can take, P (s, a, s′) is the probability that the environment
will transition to state s′ ∈ S if the agent takes action a ∈ A
in state s ∈ S, R(s, a, s′) is a function denoting the reward
received after taking action a in state s and transitioning
to state s′, and d0 is the initial state distribution. We use
t ∈ {0, 1, 2, . . . , T} to index the time-step, and write St,At,
and Rt to denote the state, action, and reward at time t. We
also consider the undiscounted episodic setting, wherein re-
wards are not discounted based on the time at which they
occur. We assume that T , the maximum time step, is finite,
and thus we restrict our discussion to episodic MDPs; that
is, after T time-steps the agent resets to some initial state.
We use I to denote the total number of episodes the agent
interacts with an environment. A policy, π : S ×A → [0, 1],
provides a conditional distribution over actions given each
possible state: π(s, a) = Pr(At = a|St = s). Furthermore,
we assume that for all policies, π, (and all tasks, c ∈ C, de-
fined later) the expected returns are normalized to be in the
interval [0, 1].

One of the key challenges within RL, and the one this
work focuses on, is related to the exploration-exploitation
dilemma. To ensure that an agent is able to find a good pol-
icy, it needs to take actions with the sole purpose of gather-
ing information about the environment (exploration). How-
ever, once enough information is gathered, it should behave
according to what it believes to be the best policy (exploita-
tion). In this work, we separate the behavior of an RL agent
into two distinct policies: an exploration policy and an ex-
ploitation policy. We assume an ε-greedy exploration sched-
ule, i.e., with probability εi the agent explores and with prob-
ability 1− εi the agent exploits, where (εi)

I
i=1 is a sequence

of exploration rates where εi ∈ [0, 1] and i refers to the
episode number in the current task.



Let C be the set of all tasks, c = (S,A, Pc, Rc, dc0). That
is, all c ∈ C are MDPs sharing the same state-set S and
action-set A, which may have different transition functions
Pc, reward functionsRc, and initial state distributions dc0. An
agent is required to solve a set of tasks or levels c ∈ C, where
we refer to the set C as the problem class. For example, if C
refers to learning to balance a pole, each task c ∈ C could
refer to balancing a pole with a given height and weight,
determining different degree of difficulty. The agent has a
task-specific policy, π, that is updated by the agent’s own
learning algorithm. This policy defines the agent’s behavior
during exploitation, and so we refer to it as the exploitation
policy. The behavior of the agent during exploration is deter-
mined by an advisor, which maintains a policy tailored to the
problem class (i.e., it is shared across all tasks in C). We refer
to this policy as an exploration policy, µ : S ×A → [0, 1].

The agent will have K = IT time-steps of interactions
with each of the sampled tasks. Hereafter we use i to denote
the index of the current episode on the current task, t to de-
note the time step within that episode, and k to denote the
number of time steps that have passed on the current task,
i.e., k = iT + t, and we refer to k as the advisor time step.
At every time-step, k, the advisor suggests an action, Uk, to
the agent, where Uk is sampled according to µ. If the agent
decides to explore at this step, it takes action Uk, otherwise
it takes action Ak sampled according to the agent’s policy,
π. We refer to an optimal policy for the agent solving a spe-
cific task, c ∈ C, as an optimal exploitation policy, π∗c . More
formally: π∗c ∈ argmax

π
E [G|π, c], where G =

∑T
t=0Rt is

referred to as the return. Thus, the agent solving a specific
task is optimizing the standard expected return objective.
From now on we refer to the agent solving a specific task
as the agent (even though the advisor can also be viewed as
an agent).

Intuitively, we consider a process that proceeds as fol-
lows. First, a task, c ∈ C is sampled from some distribu-
tion, dC , over C. Each task c corresponds to a specific level
or problem, dC determines how they are presented, and C
represents the set of levels that compose the game. Next, the
agent uses some pre-specified reinforcement learning algo-
rithm (e.g., Q-learning or Sarsa) to approximate an optimal
policy on the sampled task, c. Whenever the agent decides to
explore, it uses an action provided by the advisor according
to its policy, µ. After the agent completes I episodes on the
current task, the next task is sampled from C and the agent’s
policy is reset to an initial policy. Notice that the goals of the
advisor and agent solving a specific task are different: the
agent solving a specific task tries to optimize the expected
return on the task at hand, while the advisor searches for
an exploration policy that causes the agent to learn quickly
across all tasks. As such, the advisor may learn to suggest
bad actions if that is what the agent needs to see to learn
quickly.

Problem Statement
We define the performance of the advisor’s
policy, µ, for a specific task c ∈ C to be

Figure 1: MDP view of interaction between the advisor and
agent. At each time-step, the advisor selects an action U and
the agent an action A. With probability ε the agent executes
action U and with probability 1 − ε it executes action A.
After each action the agent and advisor receive a reward R,
the agent and advisor environment transitions to states S and
X , respectively.

ρ(µ, c) = E
[∑I

i=0

∑T
t=0R

i
t

∣∣∣µ, c] , where Rit is the

reward at time step t during the ith episode.
Let C be a random variable that denotes a task sampled

from dC . The goal of the advisor is to find an optimal ex-
ploration policy, µ∗, which we define to be any policy that
satisfies:

µ∗ ∈ argmax
µ

E [ρ(µ,C)] . (1)

We cannot directly optimize this objective because we do
not know the transition and reward functions of each MDP,
and we can only sample tasks from dC . In the next section we
show that the search for an exploration advisor policy can be
formulated as an RL problem where the advisor is itself an
RL agent solving an MDP whose environment contains both
the current task, c, and the agent solving the current task.

A General Solution Framework
Our framework can be viewed as a meta-MDP—an MDP
within an MDP. From the point of view of the agent, the en-
vironment is the current task, c (an MDP). However, from
the point of view of the advisor, the environment contains
both the task, c, and the agent. At every time-step, the advi-
sor selects an action U and the agent an action A. The se-
lected actions go through a selection mechanism which ex-
ecutes action A with probability 1 − εi and action U with
probability εi at episode i. Figure 1 depicts the proposed
framework with actionA (exploitation) being selected. Even
though one time step for the agent corresponds to one time
step for the advisor, one episode for the advisor constitutes
a lifetime of the agent (all of its interactions with a sampled
task). From this perspective, wherein the advisor is merely
another reinforcement learning algorithm, we can take ad-
vantage of the existing body of work in RL to optimize the
exploration policy, µ.

In this work, we experimented training the advisor policy
using two different RL algorithms: REINFORCE, (Williams
1992), and Proximal Policy Optimization (PPO), (Schulman



et al. 2017). A general implementation of our framework,
where the meta-MDP is trained for Imeta episodes, is de-
scribed in Algorithm 1.

Algorithm 1 Agent + Advisor - General framework

1: Initialize advisor policy µ randomly
2: for imeta = 0, 1, . . . , Imeta do
3: Sample task c from dc
4: for i = 0, 1, . . . , I do
5: Initialize π to π0
6: st ∼ dc0
7: for t = 0, 1, . . . , T do

8: at ∼
{
µ with probability εi
π with probability (1− εi)

9: take action at, observe st, rt
10: if agent algorithm is TD then
11: update π according to agent algorithm
12: if advisor algorithm is TD then
13: update µ according to advisor algorithm
14: if agent algorithm is Montecarlo then
15: update π according to agent algorithm
16: if advisor algorithm is Montecarlo then
17: update µ according to advisor algorithm

Formal MDP Definition
Below, we formally define the meta-MDP faced by the advi-
sor whose optimal policy optimizes the objective in equation
(1) 1. Recall that Rc, Pc, and dc0 denote the reward function,
transition function, and initial state distribution of the MDP
c ∈ C.

To formally describe the meta-MDP, we must capture the
property that the agent can implement an arbitrary RL algo-
rithm. To do so, we assume the agent maintains some mem-
ory,Mk, that is updated by some learning rule l (an RL algo-
rithm) at each time step, and write πMk

to denote the agent’s
policy given that its memory is Mk. In other words, Mk

provides all the information needed to determine πMk
and

its update is of the form Mk+1 = l(Mk, Sk, Ak, Rk, Sk+1)
(this update rule can represent popular RL algorithms like Q-
Learning and actor-critics). We make no assumptions about
which learning algorithm the agent uses (e.g., it can use
Sarsa, Q-learning, REINFORCE, and even batch methods
like Fitted Q-Iteration), and consider the learning rule to be
unknown and a source of uncertainty.
Proposition 1. Consider an advisor policy, µ, and episodic
tasks c ∈ C belonging to a problem class C. The prob-
lem of learning µ can be formulated as an MDP, Mmeta =
(X,U , T, Y, d′0), where X is the state space, U the action
space, T the transition function, Y the reward function, and
d′0 the initial state distribution.

Proof. To show that Mmeta is a valid MDP we need to char-
acterize the MDP’s state set, X , action set, U , transition

1It can be shown that the optimal policy optimizes the proposed
objective. Unfortunately, due to a lack of space we decided omit
such proof from this submission

function, T , reward function, Y , and initial state distribution
d′0. We assume that when facing a new task, the agent mem-
ory, M , is initialized to some fixed memory M0 (defining a
default initial policy and/or value function). The following
definitions capture the intuition provided previously:

• X = S × I × C × M. That is, the state set X is a set
defined such that each state, x = (s, i, c,M) contains the
current task, c, the current state, s, in the current task, the
current episode number, i, and the current memory,M , of
the agent.

• U = A. That is, the action-set is the same as the action-set
of the problem class, C.

• T is the transition function, and is defined such that
T (x, u, x′) is the probability of transitioning from state
x ∈ X to state x′ ∈ X upon taking action u ∈ U . Assum-
ing the underlying RL agent decides to explore with prob-
ability εi and to exploit with probability 1− εi at episode
i, then T is as follows. If s is terminal and i 6= I − 1,
then T (x, u, x′) = dc0(s′)1c′=c,i′=i+1,M ′=l(M,s,a,r,s′).
If s is terminal and i = I − 1, then T (x, u, x′) =

dC(c
′)dc

′

0 (s′)1i′=0,M ′=M0 . Otherwise, T (x, u, x′) =(
εiPc(s, u, s

′) + (1− εi)
∑
a∈Ac

πM (s, a)Pc(s, a, s
′)
)

× 1c′=c,i′=i,M ′=l(M,s,a,r,s′)

• Y is the reward function, and is defined such that the
reward obtained after taking action u ∈ U in state
x ∈ X and transitioning to state x′ ∈ X Y (x, u, x′) =
εiPc(s,u,s

′)Rc(s,u,s
′)+(1−εi)

∑
a∈A πM (a,s)Pc(s,a,s

′)Rc(s,a,s
′)

εiPc(s,u,s′)+(1−εi)
∑

a∈A πM (a,s)Pc(s,a,s′)
.

• d′0 is the initial state distribution and is defined by:
d′0(x) = dC(c)d

c
0(s)1i=0.

Since Mmeta is an MDP for which an optimal exploration
policy is an optimal policy, it follows that the convergence
properties of reinforcement learning algorithms apply to the
search for an optimal exploration policy. For example, in one
of our experiments the advisor uses the REINFORCE algo-
rithm (Williams 1992), the convergence properties of which
have been well-studied (Phansalkar and Thathachar 1995).

Although the framework presented thus far is intuitive
and results in nice theoretical properties (e.g., methods that
guarantee convergence to at least locally optimal exploration
policies), each episode corresponds to a new task, c ∈ C be-
ing sampled, meaning that training the advisor may require
a large number of tasks (episodes of the meta-MDP) to be
sampled and solved. In our experiments we overcome this
obstacle by taking a slightly different approach, where we
sample n tasks (defining a training set), train for many itera-
tions (meta-MDP episodes) using all of the n sampled tasks,
and then test the performance of the advisor on novel tasks.
This experimental design ensures that the advisor must be
able to generalize to new tasks that have not been seen pre-
viously.



(a) Pole-balancing exam-
ple task 1.

(b) Pole-balancing exam-
ple task 2.

(c) Animat example task
1.

(d) Animat example task
2.

(e) Hopper example task
1.

(f) Hopper example task
2.

(g) Ant example task 1. (h) Ant example task 2.

Figure 2: Example of task variations used in our experiments. The problem classes correspond to pole-balancing (top left),
animat (top right), hopper (bottom left), and ant (bottom right)

Empirical Results
In this section we present experiments for discrete and con-
tinuous control tasks in the following problem classes: Pole-
balancing, Animat, Hopper, and Ant, depicted in Figure
2. The implementations used for the discrete case pole-
balancing and all continuous control problems, where taken
from OpenAI Gym and Roboschool benchmarks, (Brock-
man et al. 2016). We demonstrate that: 1) in practice the
meta-MDP, Mmeta, can be solved using existing reinforce-
ment learning methods, 2) the exploration policy learned by
the advisor improves performance on existing RL methods,
on average, and 3) the exploration policy learned by the ad-
visor differs from the optimal exploitation policy for any
task c ∈ C, i.e., the exploration policy learned by the ad-
visor is not necessarily a good exploitation policy.

To that end, we will first study the behavior of our method
in two problem classes with discrete action-spaces: pole-
balancing (Sutton and Barto 1998) and animat (Thomas and
Barto 2011). Figure 2a and 2b represent two variations of the
pole-balancing problem class, where the height and mass of
the pole differ significantly. Figure 2c and 2d represent two
variations for animat, where the environment layout and goal
locations can differ arbitrarily.

We chose these problems because there are easy-to-
interpret behaviors in an optimal policy that are shared for
any variation of the tasks. In pole-balancing, if a pole is
about to fall to the right, taking an action that moves the
pole further to the right will increase the odds of dropping
the pole. In the animat problem class, there are actions that
are not helpful for reaching any goal location. To meet our
original criterion that returns are normalized between 0 and
1, we normalize the returns using estimates of the minimum
and maximum possible expected returns for each task.

As a baseline meta-learning method, to which we con-
trast our framework, we chose the recently proposed tech-
nique called Model Agnostic Meta Learning (MAML),
(Finn, Abbeel, and Levine 2017). MAML was proposed
as a general meta learning method for adapting previously
trained neural networks to novel but related tasks. It is worth

noting that the method was not specifically designed for
RL, nonetheless, in their paper, the authors describe some
promising results in adapting behavior learned from previ-
ous tasks to novel ones.

In the case of RL, MAML samples a batch of related tasks
and maintains a global parameter for the meta-learner and a
task-specific parameter for each task. The agent samples tra-
jectories from each task, and each task parameter is updated
according to its own specific objective. The global parame-
ters are updated by following the sum of the gradients ob-
tained from all tasks. In this manner, the global parameters
are updated according to all training tasks in the batch. After
training, when the agent faces a new task, it simply initial-
izes its policy to that given by the global parameters.

There are few key differences that differ from our method.
Given that the global parameter are used to initialize the
agents policy on novel tasks, it imposes a constraint that the
policy of the meta-learner should have the same form as that
of the agent. In contrast, we allow for different learning algo-
rithms to be used for the advisor (the meta-learner) and the
agent. Furthermore, the global policy learned by MAML is
only used for initialization and it is updated thereafter. Since
we focus in the RL setting, we specifically learn a policy
suited for the problem class that the agent can call at any
time.

Pole Balancing Problem Class
In our first experiments on discrete action sets, we used
variants of the standard pole-balancing (cart-pole) problem
class. The agent is tasked with applying force to a cart to
prevent a pole balancing on it from falling. The distinct tasks
were constructed by modifying 4 variables: pole mass, mp,
pole length, l, cart mass, mc, and force magnitude, f . States
are represented by 4-D vectors describing the position and
velocity of the cart, and angle and angular velocity of the
pendulum, i.e., s = [x, v, θ, θ̇]. The agent has 2 actions at its
disposal: apply a force f in the positive or negative x direc-
tion.

Figure 3a, contrasts the cumulative return of an agent



(a) Performance curves
during training comparing
advisor policy (blue) and
random exploration policy
(red).

(b) Average learning curves
on training tasks over the
first 50 advisor episodes
(blue) and the last 50 advi-
sor episodes (orange).

Figure 3: Advisor results on pole-balancing problem class.

using the advisor for exploration (in blue) with the cumu-
lative return obtained by an agent using ε-greedy random
exploration (in red) during training over 6 training tasks.
The exploitation policy, π, was trained using REINFORCE
for I = 1,000 episodes and the exploration policy, µ, was
trained using REINFORCE for 500 iterations. In the fig-
ure, the horizontal axis corresponds to iterations, which are
episodes for the adviser and entire lifetimes for the agent.
The horizontal red line denotes an estimate (with standard
error bar) of the expected cumulative reward that an agent
will obtain during its lifetime if it samples actions uniformly
when exploring. Notice that this is not a function of the train-
ing iteration, as the random exploration is not updated. The
blue curve (with standard error bars from 15 trials) shows
how the expected cumulative reward that the agent will ob-
tain during its lifetime changes as the advisor learns to im-
prove its policy. Here the horizontal axis shows the number
of training iterations—the number of episodes of the meta-
MDP. By the end of the plot, the agent is obtaining roughly
30% more reward during its lifetime than it was when us-
ing a random exploration. To better visualize this difference,
Figure 3b shows the mean learning curves (episodes of an
agent’s lifetime on the horizontal axis and average return for
each episode on the vertical axis) during the first and last
50 iterations. The mean cumulative reward were 25,283 and
30,552 respectively. Notice that, although the final perfor-
mance obtained is similar, using a trained advisor allows the
agent to reach this level of performance faster; thus achiev-
ing a larger cumulative return.

Animat Problem Class
The following set of experiments were conducted in the an-
imat problem class. In these environments, the agent is a
circular creature that lives in a continuous state space. It has
8 independent actuators, angled around it in increments of
45 degrees. Each actuator can be either on or off at each
time step, so the action set is {0, 1}8, for a total of 256 ac-
tions. When an actuator is on, it produces a small force in
the direction that it is pointing. The agent is tasked with
moving to a goal location; it receives a reward of −1 at
each time-step and a reward of +100 at the goal state. The
different variations of the tasks correspond to randomized
start and goal positions in different environments. The agent

(a) Average learning curves
for animat on training tasks
over the first 10 iterations
(blue) and last 10 iterations
(orange).

(b) Frequency of poor-
performing actions in
an agent’s lifetime with
learned (blue) and random
(red) exploration.

Figure 4: Advisor results in the animat problem class.

moves according to the following mechanics: let (xt, yt) de-
fine the state of the agent at time t and d be the total dis-
placement given by actuator β with angle θβ . The displace-
ment of the agent for a set of active actuators, B, is given by,
(∆x,∆y) =

∑
β∈B(d cos(θβ), d sin(θβ)). After taking an

action, the new state is perturbed by 0-mean unit variance
Gaussian noise.

An interesting pattern that is shared across all variations
of this problem class is that there are actuator combinations
that are not useful for reaching the goal. For example, acti-
vating actuators at θ = 0◦ and θ = 180◦ would leave the
agent in the same position it was before (ignoring the effect
of the noise). Even though the environment itself might not
provide enough structure for the advisor to leverage previous
experiences, the presence of these poor performing actions
provide some common patterns that can be leveraged.

Figure 4a shows the mean learning curves averaged over
all training tasks, where the advisor was trained for 50 iter-
ations. The curve in blue is the average curve obtained from
the first 10 iterations of training the advisor and the curve in
orange is the average obtained from the last 10 training it-
erations of the advisor. Each individual task was trained for
I = 800 episodes. The figure shows a clear performance
improvement on average as the advisor improves its policy.

To test our intuition that an exploration policy would ex-
ploit the presence of poor-performing actions, we recorded
the frequency with which they were executed on unseen test-
ing tasks when using the learned exploration policy after
training and when using a random exploration strategy, over
5 different learned policies. Figure 4b helps explain the dif-
ference in performance seen in Figure 4a. It depicts in the y-
axis, the percentage of times these poor-performing actions
were selected at a given episode, and in the x-axis the agent
episode number in the current task. This shows that the agent
using the advisor policy (blue) is encouraged to reduce the
selection of known poor-performing actions, compared to a
random action-selection exploration strategy (red).

Is an Exploration Policy Simply a General
Exploitation Policy?
One might be tempted to think that the learned policy for
exploration might simply be a policy that works well in gen-
eral. So how do we know that the advisor is learning a policy



Problem Class R R+Advisor PPO PPO+Advisor MAML
Pole-balance (d) 20.32± 3.15 28.52± 7.6 27.87± 6.17 46.29± 6.30 39.29± 5.74

Animat −779.62± 110.28 −387.27± 162.33 −751.40± 68.73 −631.97± 155.5 −669.93± 92.32
Pole-balance (c) — — 29.95± 7.90 438.13± 35.54 267.76± 163.05

Hopper — — 13.82± 10.53 164.43± 48.54 39.41± 7.95
Ant — — −42.75± 24.35 83.76± 20.41 113.33± 64.48

Table 1: Average performance on discrete and continuous control unseen tasks over the last 50 episodes. In the cases where
advisor performs best, the results are statistically significant. For the Ant domain, MAML appears to be better, although the
high variance in returns makes this result not statistically significant

(a) Average returns obtained
on test tasks when using the
advisor’s exploration policy
(blue) and a task-specific
exploitation (green)

(b) Number of steps needed
to complete test tasks with
advisor policy (blue) and
exploitation (green).

Figure 5: Performance comparison of exploration and ex-
ploitation policies.

that is useful for exploration and not simply a policy for ex-
ploitation? To answer this question, we generated three dis-
tinct unseen tasks for both pole-balancing and animat prob-
lem classes and compare the performance of using only the
learned exploration policy with the performance obtained by
an exploitation policy trained to solve each specific task.

Figure 5 shows two bar charts contrasting the perfor-
mance of the exploration policy (blue) and the exploitation
policy (green) on each task variation. In both charts, the first
three groups of bars on the x-axis correspond to the perfor-
mance each test task and the last one to an average over all
tasks. Figure 5a corresponds to the mean performance on
pole-balancing and the error bars to the standard deviation;
the y-axis denotes the return obtained. We can see that, as
expected, the exploration policy by itself fails to achieve a
comparable performance to a task-specific policy. The same
occurs with the animat problem class, depicted in Figure 5b.
In this case, the y-axis refers to the number of steps needed
to reach the goal (smaller bars are better). In all cases, a task-
specific policy performs significantly better than the learned
exploration policy, indicating that the learned policy is use-
ful for exploration, and not a general exploitation policy.

Performance Evaluation on Novel Tasks
In this section we examine the performance of our frame-
work on novel tasks, and contrast our method to MAML
trained using PPO. In the case of discrete action-sets, we
trained each task for 500 episodes and compare the perfor-
mance of an agent trained with REINFORCE (R) and PPO,
with and without an advisor. In the case of continuous tasks,

we restrict our experiments to an agent trained using PPO
(since it was shown to perform well in continuous control
problems), with and without an advisor after training for 500
episodes. In our experiments we set the initial value of ε to
ε0 = 0.8, and defined the update after each agent episode
to be εi+1 = max(0.1, 0.995εi). The results shown in ta-
ble 1 were obtained as follows. Each novel task was trained
5 times, and the average and standard deviation of those
performances were recorded. The table displays the mean
of those averages and the mean of the standard deviations
recorded. In both the discrete and continuous case, there
were 5 novel tasks. The problem classes “pole-balance (d)”
and “animat” correspond to discrete actions spaces, while
“pole-balance (c)”, “hopper”, and “ant” are continuous.

In the discrete case, we can see that for both pole-
balancing and Animat, MAML showed a clear improvement
over starting from a random initial policy. However, using
the advisor with PPO resulted in a clear improvement in
pole-balancing and, in the case of animat, training the advi-
sor with REINFORCE led to an almost 50% improvement
over MAML. In the case of continuous control, the first
test corresponds to a continuous version of pole-balancing,
where the different variations were obtained by modifying
the length and mass of the pole, and the mass of the cart.
The second and third set of tasks correspond to the “Hop-
per” and “Ant” problem classes, where the task variations
were obtained by modifying the length and size of the limbs
and body. In all continuous control tasks, both using the ad-
visor and MAML led to an significant improvement in per-
formance in the alloted time. In the case of pole-balancing
using the advisor led the agent to accumulate almost twice
as much reward as MAML, and in the case of Hopper, the
advisor led to accumulating 4 times the reward. On the other
had, MAML led to an higher average return than the advi-
sor in the Ant problem class, but showing very high vari-
ance. An important takeaway from these results is that in all
cases, using the advisor resulted in a clear improvement in
performance over a limited number of episodes. This does
not mean that the agent can reach a better policy over an ar-
bitrarily long period of time, but rather that it is able to reach
a certain performance level much quicker.

Conclusion
In this work we developed a framework for leveraging expe-
rience to guide an agent’s exploration in novel tasks, where
the advisor learns the exploration policy used by the agent



solving a task. We showed that a few sample tasks can be
used to learn an exploration policy that the agent can use
improve the speed of learning on novel tasks.
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