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Abstract

We present Pommerman, a multi-agent environment based on
the classic console game Bomberman. Pommerman consists
of a set of scenarios, each having at least four players and con-
taining both cooperative and competitive aspects. We believe
that success in Pommerman will require a diverse set of tools
and methods, including planning, opponent/teammate model-
ing, game theory, and communication, and consequently can
serve well as a multi-agent benchmark. To date, we have al-
ready hosted one competition, and our next one will be fea-
tured in the NIPS 2018 competition track.

Why Pommerman
In this section, we provide our motivation and goals for both
the Pommerman benchmark and the NIPS 2018 competi-
tion. Currently, there is no consensus benchmark involving
either general sum game settings or settings with at least
three players. Instead, recent progress has focused on two
player zero-sum games such as Go and Chess. We believe
that the Pommerman environment can assume this role for
multi-agent learning. Additionally, we are organizing com-
petitions for Pommerman because we believe that they are
a strong way to push forward the state of the art and can
contribute to lasting results for years to come.

Multi-Agent Learning
Historically, a majority of multi-agent research has focused
on zero-sum two player games. For example, computer com-
petitions for Poker and Go over the past fifteen years have
been vital for developing methods culminating in recent su-
perhuman performance (Moravcı́k et al. 2017; Noam Brown
2017; Bowling et al. 2017; Silver et al. 2016). These bench-
marks have also lead to the discovery of new algorithms
and approaches like Monte Carlo Tree Search (Vodopivec,
Samothrakis, and Šter 2017; Browne et al. 2012; Kocsis and
Szepesvári 2006; Coulom 2006) and Counterfactual Regret
Minimization (Zinkevich et al. 2008).

We believe that an aspect restraining the field from pro-
gressing towards general-sum research and scenarios with
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more than two players is the lack of suitable environments.
We propose Pommerman as a solution.

Pommerman is stylistically similar to Bomberman
(Bomberman 1983), the famous game from Nintendo. At a
high level, there are at least four agents all traversing a grid
world. Each agent’s goal is to have their team be the last
remaining. They can plant bombs that, upon expiration, de-
stroy anything (but rigid walls) in their vicinity. It contains
both adversarial and cooperative elements. The Free-For-All
(FFA) variant has at most one winner and, because there are
four players, encourages research directions that can han-
dle situations where the Nash payoffs are not all equivalent.
The team variants encourage research with and without ex-
plicit communication channels, including scenarios where
the agent has to cooperate with previously unseen team-
mates. The latter is a recently burgeoning subfield of multi-
agent learning (Foerster et al. 2016; Resnick et al. 2018d;
Evtimova et al. 2017; Foerster et al. 2017; Lewis et al. 2017;
Mordatch and Abbeel 2017; Lazaridou et al. 2018) with es-
tablished prior work as well (Steels 1999; 2003; Levy and
Kirby 2006; Fehervari and Elmenreich 2010), while the for-
mer has been underexplored.

We aim for the Pommerman benchmark to provide for
multi-agent learning what the Atari Learning Environment
(Bellemare et al. 2013) provided for single-agent reinforce-
ment learning and ImageNet (Deng et al. 2009) for image
recognition. Beyond game theory and communication, Pom-
merman can also serve as a testbed for research into rein-
forcement learning, planning, and opponent/teammate mod-
eling.

RoboCup Soccer (Nardi et al. 2014) is a similar competi-
tion that has been running since 1997. There, eleven agents
per side play soccer. Key differences between Pommerman
and RoboCup Soccer are:

1. Pommerman includes an explicit communication channel.
This changes the dynamics of the game and adds new re-
search avenues.

2. Pommerman strips away the sensor input, which means
that the game is less apt for robotics but more apt for
studying other aspects of AI, games, and strategy.

3. Pommerman uses low dimensional, discrete control and
input representations instead of continuous ones. We be-
lieve this makes it easier to focus on the high level strate-



gic aspects rather than low level mechanics.

4. In team variants, the default Pommerman setup has only
two agents per side, which makes it more amenable to bur-
geoning fields like emergent communication which en-
counter training difficulties with larger numbers of agents.

5. Pommerman’s FFA variant promotes research that does
not reduce to a 1v1 game, which means that a lot of the
theory underlying such games (like RoboCup Soccer) is
not applicable.

The second, third, and fourth differences above are a posi-
tive or negative trade-off depending on one’s research goals.

Another, more recent, benchmark is Half-Field Offense
(Hausknecht et al. 2016), a modification of RoboCup that
reduces the complexity and focuses on decision-making in
a simplified subtask. However, unlike the FFA scenario in
Pommerman, Half-Field Offense is limited to being a zero-
sum game between two teams.

In general, the communities that we want to attract to
benchmark their algorithms have not gravitated towards
RoboCup but instead have relied on a large number of one-
off toy tasks. This is especially true for multi-agent Deep
RL. We think that the reasons for that could be among the
five above. Consequently, Pommerman has the potential to
unite these communities, especially when considering that
future versions can be expanded to more than four agents.

High Quality Benchmark
There are attributes that are common to the best benchmarks
beyond satisfying the community’s research direction. These
include having mechanics and gameplay that are intuitive for
humans, being fun to play and watch, being easy to integrate
into common research setups, and having a learning problem
that is not too difficult for the current state of method devel-
opment. Most games violate at least one of these. For ex-
ample, the popular game Defense of the Ancients (OpenAI
2018) is intuitive and fun, but extremely difficult to integrate.
On the other hand, the card game Bridge is easy to integrate,
but it is not intuitive; the gameplay and mechanics are slow
to learn and there is a steep learning curve to understanding
strategy.

Pommerman satisfies these requirements. People have no
trouble understanding basic strategy and mechanics. It is fun
to play and to watch, having been developed by Nintendo
for two decades. Additionally, we have purposefully made
the state input based not on pixel observations but rather on
a symbolic interpretation so that it does not require large
amounts of compute to build learning agents.

Research game competitions disappear for two reasons
- either the administrators stop running it or participants
stop submitting entrants. This can be due to the game be-
ing ‘solved’, but it could also be because the game just was
not enjoyable or accessible enough. We view Pommerman
as having a long life ahead of it. Beyond the surface hyper-
parameters like board size and number of walls, early forays
suggest that there are many aspects of the game that can be
modified to create a rich and long lasting research challenge
and competition venue. These include partial observability

of the board, playing with random teammates, communica-
tion among the agents, adding power-ups, and learning to
play with human players.

These potential extensions, and the fact that N-player
learning by itself has few mathematical guarantees, suggest
that Pommerman will be a challenging and fruitful testbed
for years to come.

There are, however, limitations to this environment. One
difficulty is that a local optimum arises where the agent
avoids exploding itself by learning to never use the bomb
action. In the long term, this is ineffective because the agent
needs to use the bomb to destroy other agents. Players have
successfully solved this challenge (Resnick et al. 2018a), but
it is an aspect of basic gameplay that has to be handled in
order for the multi-agent research benefits to become appar-
ent.

Description
In this section, we give details of the Pommerman environ-
ment. Note that all of the code to run the game and train
agents can be found in our git repository (Resnick et al.
2018b), while our website (pommerman.com) contains fur-
ther information on how to submit agents.

Game Information

Figure 1: Pommerman start state. Each agent begins in one
of four positions. Yellow squares are wood, brown are rigid,
and the gray are passages.

As previously mentioned, Pommerman is stylistically
similar to Bomberman. Every battle starts on a randomly
drawn symmetric 11x11 grid (‘board’) with four agents, one
in each corner. Teammates start on opposite corners.

In team variants, the game ends when both players on one
team have been destroyed. In FFA, it ends when at most one
agent remains alive. The winning team is the one that has at
least one remaining agent. Ties can happen when the game
does not end before the max steps or if the last agents are
destroyed on the same turn. If this happens in competitions,
we will rerun the game. If it reoccurs, then we will rerun the
game with collapsing walls until there is a winner. This is a
variant where, after a fixed number of steps, the game board
becomes smaller according to a specified cadence. We have
a working example in the repository.

Besides the agents, the board consists of wooden and rigid
walls. We guarantee that the agents will have an accessible



Game Intuitive? Fun? Integration?
Bridge 1 3 5
Civilization 2 3 1
Counterstrike 5 5 2
Coup 4 5 5
Diplomacy 1 4 3
DoTA 3 5 2
Hanabi 2 3 5
Hearthstone 1 4 1
Mario Maker 4 5 3
Pommerman 5 4 5
PUBG 5 5 1
Rocket League 5 4 1
Secret Hitler 4 4 3
Settlers of Catan 4 3 3
Starcraft 2 3 5 5
Super Smash 5 5 1

Table 1: Comparing multi-agent games along three important axes for uptake beyond whether the game satisfies the commu-
nity’s intended research direction. Attributes are considered on a 1-5 scale where 5 represents the highest value. Fun takes into
account both watching and playing the game. The Intuitive and Fun qualities, while subjective, are noted because they have
historically been factors in whether a game is used in research.

path to each other. Initially, this path is occluded by wooden
walls. See Figure 1 for a visual reference.

Rigid walls are indestructible and impassable. Wooden
walls can be destroyed by bombs. Until they are destroyed,
they are impassable. After they are destroyed, they become
either a passage or a power-up.

On every turn, agents choose from one of six actions:

1. Stop: This action is a pass.

2. Up: Move up on the board.

3. Left: Move left on the board.

4. Down: Move down on the board.

5. Right: Move right on the board.

6. Bomb: Lay a bomb.

Additionally, if this is a communicative scenario, then the
agent emits a message every turn consisting of two words
from a dictionary of size eight. These words are passed to its
teammate in the next step as part of the observation. In total,
the agent receives the following observation each turn:

• Board: 121 Ints. The flattened board. In partially observed
variants, all squares outside of the 5x5 purview around the
agent’s position will be covered with the value for fog (5).

• Position: 2 Ints, each in [0, 10]. The agent’s (x, y) position
in the grid.

• Ammo: 1 Int. The agent’s current ammo.

• Blast Strength: 1 Int. The agent’s current blast strength.

• Can Kick: 1 Int, 0 or 1. Whether the agent can kick or not.

• Teammate: 1 Int in [-1, 3]. Which agent is this agent’s
teammate. In non-team variants, this is -1.

• Enemies: 3 Ints in [-1, 3]. Which agents are this agent’s
enemies. In team variants, the third int is -1.

• Bomb Blast Strength: List of Ints. The bomb blast
strengths for each of the bombs in the agent’s purview.

• Bomb Life: List of Ints. The remaining life for each of the
bombs in the agent’s purview.

• Message: 2 Ints in [0, 8]. The message being relayed from
the teammate. Both Ints are zero only when a teammate is
dead or if it is the first step. This field is not included for
non-cheap talk variants.

The agent starts with one bomb (‘ammo’). Every time it
lays a bomb, its ammo decreases by one. After that bomb ex-
plodes, its ammo will increase by one. The agent also has a
blast strength that starts at two. Every bomb it lays is im-
bued with the current blast strength, which is how far in
the vertical and horizontal directions that bomb will effect.
A bomb has a life of ten time steps. Upon expiration, the
bomb explodes and any wooden walls, agents, power-ups or
other bombs within reach of its blast strength are destroyed.
Bombs destroyed in this manner chain their explosions.

Power-Ups: Half of the wooden walls have hidden power-
ups that are revealed when the wall is destroyed. These are:

• Extra Bomb: Picking this up increases the agent’s ammo
by one.

• Increase Range: Picking this up increases the agent’s blast
strength by one.

• Can Kick: Picking this up permanently allows an agent to
kick bombs by moving into them. The bombs travel in the
direction that the agent was moving at one unit per time
step until they are impeded either by a player, a bomb, or
a wall.

Early results
The environment has been public since late February and
the competitions were first announced in late March. In
that time, we have seen a strong community gather around



the game, with more than 500 people in the Discord
server (https://discord.gg/mtW7kp) and more than half of
the repository commits from open source contributors.

There have also been multiple published papers using
Pommerman (Resnick et al. 2018a; Zhou et al. 2018). These
demonstrate that the environment is challenging and we do
not yet know what are the optimal solutions in any of the
variants. In particular, the agents in (Resnick et al. 2018a)
discover a novel way of playing where they treat the bombs
as projectiles by laying, then kicking them at opponents.
This is a strategy that not even novice humans attempt, yet
the agents use it to achieve a high success rate.

Preliminary analysis suggests that the game can be very
challenging for reinforcement learning algorithms out of
the box. Without a very large batch size and a shaped re-
ward (Ng, Harada, and Russell 1999), neither of Deep Q-
Learning (Mnih et al. 2013) nor Proximal Policy Optimiza-
tion (Schulman et al. 2017) learned to successfully play the
game against the default learning agent (‘SimpleAgent’).
One reason for this is because the game has a (previously
mentioned) unique feature in that the bomb action is highly
correlated with losing but must be wielded effectively to
win.

We also tested the effectiveness of DAgger (Daumé,
Langford, and Marcu 2009) in bootstrapping agents to match
the SimpleAgent. We found that, while somewhat sensitive
to hyperparameter choices, it was nonetheless effective at
yielding agents that could play at or above the FFA win rate
of a single SimpleAgent (∼ 20%). This is less than chance
because four simple agents will draw a large percentage of
the time.

Competitions
In this section, we describe the Pommerman competitions.
This includes both the upcoming NIPS 2018 event and the
FFA competition that we already ran.

FFA competition
We ran a preliminary competition on June 3rd, 2018. We did
not advertise this widely other than within our Discord so-
cial group (https://discord.gg/mtW7kp), nor did we have any
prizes for it. Even so, we had a turnout of eight competitors
who submitted working agents by the May 31st deadline.

The competition environment was the FFA variant
(Resnick et al. 2018c) where four agents enter, all of whom
are opponents. The top two agents were submitted by Görög
Mrton and a team led by Yichen Gong, with the latter being
the strongest.

Görög’s agent improved upon the repository’s baseline
agent through a number of edits. On the other hand, Yichen’s
agent was a redesign implementing a Finite State Machine
Tree-Search approach (Zhou et al. 2018). They respectively
won 8 and 22 of their 35 matches (with a number of the re-
maining being ties).

NIPS Competition
The NIPS competition will be held live at NIPS 2018 and
competitors are required to submit a team of two agents by

November 21st, 2018. The featured environment will be the
partially observable team variant without communication.
Otherwise, we will be reusing the machinery that we devel-
oped to run the FFA competition.

Submitting Agents
We run the competitions using Docker and expect sub-
missions to be accompanied by a Docker file that we can
build on the game servers. For FFA competitions, this en-
tails submitting a (possibly private) repository having one
Docker file representing the agent. For team competitions,
this means the submission should have two Docker files to
represent the two agents. Instructions and an example for
building Docker containers from trained agents can be found
in our repository (Resnick et al. 2018b).

The agents should follow the prescribed convention spec-
ified in our example code and expose an ‘act’ endpoint that
accepts the dictionary of observations. Because we are us-
ing Docker containers and http requests, we do not have any
requirements for programming language or framework.

The expected response from the agent will be a single in-
teger in [0, 5] representing which of the six actions that agent
would like to take. In variants with messages, we also expect
two more integers in [1, 8] representing the message. If an
agent does not respond in an appropriate time limit for our
competition constraints (100ms), then we will automatically
issue them the Stop action and, if appropriate, have them
send out the message (0, 0). This timeout is an aspect of the
competition and not native to the game itself.

Conclusion
In this paper, we have introduced the Pommerman environ-
ment, detailed why it is a strong setup for multi-agent re-
search, and described early results and competitions.

All of the code is readily available at our git reposi-
tory (github.com/MultiAgentLearning/playground) and fur-
ther information about competitions, including NIPS 2018,
on our website (pommerman.com).
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carlo tree search and reinforcement learning. J. Artif. Int.
Res. 60(1):881–936.
Zhou, H.; Gong, Y.; Mugrai, L.; Khalifa, A.; Andy, N.; and
Togelius, J. 2018. A hybrid search agent in pommerman. In
The International Conference on the Foundations of Digital
Games (FDG).
Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione, C.
2008. Regret minimization in games with incomplete infor-
mation. In Platt, J. C.; Koller, D.; Singer, Y.; and Roweis,



S. T., eds., Advances in Neural Information Processing Sys-
tems 20. Curran Associates, Inc. 1729–1736.


