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Abstract

In this paper we propose a new training loop for deep re-
inforcement learning agents with an evolutionary generator.
Evolutionary procedural content generation has been used in
the creation of maps and levels for games before. Our sys-
tem incorporates an evolutionary map generator to construct
a training curriculum that is evolved to maximize loss within
the state-of-the-art Double Dueling Deep Q Network archi-
tecture with prioritized replay (Wang et al. 2016) (Schaul et
al. 2015). We present a case-study in which we prove the ef-
ficacy of our new method on a game with a discrete, large
action space we made called Attackers and Defenders. Our
results demonstrate that training on an evolutionarily-curated
curriculum (directed sampling) of maps both expedites train-
ing and improves generalization when compared to a network
trained on an undirected sampling of maps.

1 Introduction

The use of games as benchmarks for Al progress has prop-
agated to nearly the entire Al research community, includ-
ing Chess, Atari Breakout, and more recently with Go as
superhuman agents have been developed. Many recent pa-
pers document new Al methods being used within game en-
vironments. But the current state-of-the-art training method
to ensure generalization in a neural network system of any
kind remains brute force random sampling training, i.e. give
a network enough unique states to train on and hope gener-
alization naturally occurs. We propose a new method of di-
rected sampling training called ’evolutionarily-curated cur-
riculum learning” (ECCL), which we argue results in faster
and better network generalization.

Past experiments have shown the potential in teaching
simple concepts first, on which more complicated ones can
then be taught, as a successful way to train networks (Elman
1993). To go one step further, we propose a method which
specifically identifies weaknesses in the network and then
generates content that force the network to face these weak-
nesses head-on. Our system dynamically evolves a curricu-
lum by searching for content that maximizes the network’s
loss, which makes the network generalize faster and perform
better.
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Figure 1: Evolutionarily-based curriculum learning in an
agent’s training loop

In this paper, we give a brief overview of research within
reinforcement learning, the use of evolutionary algorithms
in procedural content generation, and curriculum learning
research for networks in Section 2. In Section 3 we discuss
the theory of evolutionarily-based curriculum learning and
how it could be applied to a reinforcement learning agent.
We then use Attackers and Defenders as a case study in Sec-
tion 4, with results and discussion from our experiment in
Section 5, and conclude in Section 6.

2 Background

This section begins with a brief overview of deep re-
inforcement learning research, beginning with Minksy in
1954 (Minsky 1954) and finishing with the state-of-the-art
DDDQN (Wang et al. 2016), AlphaZero (Silver et al. 2017b;
2017a), and ExIt (Anthony, Tian, and Barber 2017) agent
architectures. It then discusses evolutionary algorithms and
how they can be applied toward procedural content gener-
ation in games. The section concludes with the concept of
curriculum learning for machines and the admittedly scant
amount of research within this area.



2.1 Deep Reinforcement Learning

Reinforcement Learning (RL) concerns itself with the idea
of learning through trial-and-error interactions with a dy-
namic environment and balancing the reward trade-off be-
tween long-term and short-term planning (Sutton and Barto
1998). RL has been studied since Minksy (Minsky 1954)
in the 1950’s. Since then, important improvements to the
concept have been advanced including the temporal dif-
ference learning method (Sutton 1984; 1988), on which g-
learning (Watkins and Dayan 1992) and actor-critic (Barto,
Sutton, and Anderson 1983) techniques are built. Gulla-
palli (Gullapalli 1990) and Williams (Williams 1992) are
early examples of the use of RL within artificial neu-
ral networks (ANNs). When Rumelhart et al discovered
the backpropogation algorithm (Rumelhart, Hinton, and
Williams 1986), deep learning took off in popularity. This
has been bolstered recently by the rise in the capability and
affordability of computer-processing units and graphical-
processing units. Further readings of work in RL can be
found in reviews by Schmidhuber (Schmidhuber 2015) and
Szepsvari (Szepesvari 2010).

RL applied to deep learning has been only recently suc-
cessful due to some key advancements. Mnih et al pro-
posed Deep Q Networks (DQNs) (Mnih et al. 2015) us-
ing target networks and experience replay to improve the
known divergence issues present in RL. van Hesselt et al
built Double Deep Q Networks (Van Hasselt, Guez, and
Silver 2016) which help reduce the overestimation errors
that normal DQNs suffer from. Hessel et al wrote a paper
surveying state-of-the-art improvements to DQN within the
Atari framework, including Double Dueling Deep Q Net-
works, Distributional Deep Q Networks, and Noisy Deep
Q Networks (Hessel et al. 2017). Prioritized experience re-
ply (Schaul et al. 2015) allows DQNs to remember past ex-
periences in a prioritized fashion, rather than at the same
frequency that they were experienced.

Further DQN stability has been attained through the intro-
duction of dueling networks (Wang et al. 2016), which are
built on top of Double DQNs. Dueling networks use two
separate estimators for the state value function and state-
dependent action advantage function to generalize learning
across actions without effecting the underlying RL algo-
rithm. Double Dueling DQNss are currently considered state-
of-the-art reinforcement learning algorithms.

Asynchronous Advantage Actor Critic (A3C) networks
were created by Mnih et al in a successful attempt to apply
neural networks to actor-critic reinforcement learning. The
“asynchronous” part of A3C makes training parallelizable,
allowing for massive computation speedups.

The AlphaGo algorithm combined Monte Carlo Tree
Search (MCTS) with deep neural networks to play the game
of Go and become the first Al to beat the human world cham-
pion of the game (Silver et al. 2016). The more advanced
version, AlphaZero, was able to learn only by self-playing
and outperformed AlphaGo (Silver et al. 2017b). The same
AlphaZero architecture was then applied to both Chess and
Shogi to convincingly beat world-champion programs (Sil-
ver et al. 2017a). At the same time, Anthony et al discov-
ered the Expert Iteration algorithm (Anthony, Tian, and Bar-

ber 2017), which also uses a neural network policy to guide
tree search. Since the advent of these state-of-the-art algo-
rithms, much research has been done to either improve or
apply them to different problems with varying degrees of
success.

2.2 Evolution and Procedural Content
Generation

Evolutionary algorithms (EA) fall within the area of op-
timization search inspired by Darwinian evolutionary con-
cepts such as reproduction, fitness, and mutation (Togelius,
Shaker, and Nelson 2016). EA has been used within games
to procedurally generate levels, game elements within them,
and sometimes even games themselves (Khalifa et al. 2017).
Puzzle generation is a primary example of this kind of
search-based generation (Ashlock 2010), which can be used
to create puzzles with a desired solution difficulty. Check-
point based fitness allows for fitness function parameteriza-
tion (Ashlock, Lee, and McGuinness 2011), affording sub-
stantial control over generated properties. Stylistic genera-
tion is made possible by using fashion-based cellular au-
tomata (Ashlock 2015). An EA generator for a given game
can also evolve many things at once by decomposing level
generation into multiple parts. McGuinness et al did this
by creating a micro evolutionary system which evolves in-
dividual tile sections of a level and an overall macro gen-
eration system which evolves placement patterns for the
tiles (McGuinness and Ashlock 2011). Evolutionary search
can be used for generalized level generation in multiple do-
mains such as General Video Game Al (Khalifa et al. 2016)
and PuzzleScript (Khalifa and Fayek 2015a). In later work
by Khalifa et al. (Khalifa et al. 2018), they worked on gen-
erating levels for a specific game genre (Bullet Hell genre)
using a new hybrid evolutionary search called Constrained
Map-Elites. The levels were generated using automated
playing agents with different parameters to mimic various
human play-styles. Green et al. used EA to evolve Super
Mario Bros (Nintendo, 1985) scenes which taught specific
mechanics to the player (Green et al. 2018). We recommend
Khalifa’s review on searched-based level generation for fur-
ther reading into EA for generation in games (Khalifa and
Fayek 2015b).

2.3 Curriculum Learning in Machines

The concept of curriculum learning (CL) in machines can
be traced back to Elman in 1993 (Elman 1993). The ba-
sic idea is to keep initial training data simple and slowly
ramp up in difficulty as the model learned. Krueger and
Dayan (Krueger and Dayan 2009) did a cognitive-based
analysis with evidence that shaping data provided faster con-
vergence. CL was further explored by Bengio et al. in 2009,
in an attempt to define several machine learning guided
training strategies (Bengio et al. 2009). Their experiments
suggested that incorporating CL into training a model could
both speed up training and significantly increase generaliza-
tion. Recently, Curriculum Learning within adversarial net-
work training (Cai et al. 2018) was explored by Cai et al in
an attempt to mitigate “forgetfulness* and increase gener-
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Figure 2: A visualization of a map in Attackers and Defend-
ers

alization to reduce the effectiveness of adversarial network
attacks.

2.4 Evolution within Networks

Using evolutionary strategy for neural networks is a well-
researched topic. Genetic algorithms were used in the node
weight balancing of a network by Ronald et al (Ronald and
Schoenauer 1994) to evolve a controller for soft-landing a
toy lunar module in a simulation. Simultaneously, Gruau
evolved the structures and parameters of networks using
cellular encoding (Gruau and others 1994). Cartesian Ge-
netic Programming was first designed by Miller et al (Miller,
Thomson, and Fogarty 1997) to design digital circuits using
genetic programming. It is called ‘Cartesian’ because of the
way it represents a program using a 2-dimensional set of
nodes.

All of these methods and more may be housed under the
umbrella of “neuroevolution” which is well-defined by Flo-
reano et al (Floreano, Diirr, and Mattiussi 2008). A survey
of neuroevolution within games is written by Risi and To-
gelius (Risi and Togelius 2017). We mention neuroevolution
to highlight the major difference that whereas it is used to
evolve the parameters or architecture of a network, our ap-
proach evolves training data as part of a curriculum for a
constant architecture.

3 Evolved Curriculum in the Training Loop

Traditional training of a neural network involves a training
schedule established by taking random batches of a fixed
training set, which is assumed to be an unbiased random
sample of the data space. For game-playing agents specif-
ically, this training set is the set of levels or maps that the
network is exposed to. The hope is that the sample is suffi-
cient to train the neural network to generalize to the entire
data space (i.e. all possible maps).

Instead, ECCL relies on producing a training curriculum
composed of a biased sampling of the data space, specif-
ically designed to improve generalization. ECCL involves

two parts: the agent to be trained and an evolutionary gener-
ator. Unlike neuroevolution methods, the use of evolution in
evolved curriculum is not to evolve the weights or architec-
ture of the network. The evolutionary generator’s sole pur-
pose is to evolve scenarios which have the best potential to
improve the agent’s generalization. To do this, the goal of the
evolutionary generator is to produce maps which maximize
the loss of the agent network.

Figure 1 shows the training loop that uses evolutionarily-
based curriculum learning. In this figure, the agent is a Dou-
ble Dueling Deep Q Network (DDDQN) with Prioritized
Replay (Wang et al. 2016; Schaul et al. 2015) which we used
in our case study, explained in Section 4. One reason for us-
ing this specific type of network architecture is the choice
of our library- Tensorflow. The network used in ecperiments
presents in this paper is near state-of-the-art with a few dele-
tions that we deemed unnecessary to use.

When the network requests more maps to train on, the
evolutionary generator is tasked to evolve maps which max-
imize the amount of loss in the network by querying the
loss directly. By maximizing loss, the network is necessarily
seeing a valid map in map space that it failed to generalize
to properly. Concretely, this could be a edge-case map that
where an uncommon move is optimal or requires another
strategy altogether from maps the network has already seen.
The agent plays this map, as well as any others in the batch.

After finishing a batch, the system divides the different
game states caused by moves from all games into experience
snapshots, and sorts the experience snapshots by priority to
be stored in a prioritized replay bank. It then uses these ex-
periences to train the weights in the network appropriately,
and updates priorities in the bank using network loss. The
network then asks the generator to produce more maps to
repeat the process until training terminates.

4 Case Study: Attackers and Defenders

The following section concerns a case study in which we
compare our method’s impact against other state-of-the-art
algorithms. We hypothesized that the evolutionary generator
would create higher quality training data which would more
effectively improve network performance, and our experi-
ment attempts to prove this.

Section 4.1 explains the game of Attackers and Defend-
ers a simple tower defense game which we created as a
testbed. Section 4.3 explains the generator and how it pro-
duces maps. Section 4.4 describes the training/testing meth-
ods used to validate our claims.

4.1 Attackers and Defenders

To prove the concept of ECCL, we created a discrete, large
action space, tower-defense game called Attackers and De-
fenders as a test-bed. Figure 2 displays a visualization of a
game map. The objective of the player in Attackers and De-
fenders is to prevent enemies from reaching their home tile
for as long as possible. This game is a model of sequential
decision making that applies broadly to other game and non-
game domains, which makes it an appropriate testbed for our
algorithm.



Game Entity | Description
Neutral an empty tile with no penalties
Slow a tile makings attackers 2 turns to move
Block a tile preventing attackers from moving
Home the tile attackers are trying to move onto
Source the tiles from which attackers spawn

automatous entities which are moving toward
Attacker .

the home tile

entities which the player can place; these do
Defender Hes whl player can p

damage to all attackers within range

Table 1: A table with all entities in the game

Game Entities Arracker entities have hit-points (HP),
which may vary in number and generally increase over the
course of a single play session. To facilitate this survival
goal, the player is given Defender entities which do damage
to attacker HP, slow tiles which penalize attacker movement
when traveling through these tiles, and block tiles which pro-
hibit attacker movement. Table 1 displays all tiles/entities
within the game and how they work.

Game Loop Each turn, the player is prompted to place
a defender, slow, or block tile on the game map. After the
player places an entity, the game advances forward one turn.
During this period, a source tile may spawn an attacker,
which will then slowly advance toward the home tile. If an
attacker moves into a space within a defender’s attack range
(which may overlap with other defenders), the attacker will
suffer damage equivalent to the sum of all in-range defender
damage. If an an attacker runs out of HP, it will be destroyed.
If an attacker manages to move onto the home tile, the game
will end.

4.2 Constructive Generator

In order to appropriately measure the effect of an evolved
curriculum versus the impact of increased access to addi-
tional training points, we design the constructive generator.
With access to a set of underlying parameters of the data,
each with a set of acceptable values, and a global set of con-
straints, there exists a constructive generator that produces
unbiased random samples of this data by simply permuting
over possible combinations of parameter values, and simply
throwing away those combinations that do not satisfy the
constraints. Training with such a generator (which we refer
to as our “constructive” network) is analogous to the undi-
rected sampling case where the training data is fixed.

In Attackers and Defenders, the constructive generator is
given the available tile types and where they can be placed
(i.e. parameter values and set of possible values), along with
the constraints presented in Table 2, and simply selects ran-
dom combinations of tile values, outputting only those com-
binations that satisfy the constraints and discarding the rest.

4.3 Evolutionary Generator

Our system uses the Feasible Infeasible 2-Population (FI-
2Pop) genetic algorithm (Kimbrough et al. 2008) to evolve
boards. FI-2Pop is an evolutionary algorithm which uses two

populations: a feasible population and an infeasible popula-
tion. The infeasible population aims at improving infeasible
solutions to “legally-playable” threshold, when they become
feasible and are transfered to the feasible population. The
feasible population, on the other hand, aims at improving the
quality of feasible chromosomes. If one becomes infeasible,
it is then relocated to the infeasible population. After evolv-
ing solutions for several generations, the system outputs the
board with the highest fitness.

Chromosomal Representation, Crossover, and Mutation
A board chromosome is represented as a 2-dimensional ar-
ray of tile types. Crossover (Figure 3) is done using 2-d ar-
ray crossover, by picking a sub-array within one parent and
swapping it with the other, creating a new board as a result.
Mutation is done by selecting a random tile and changing its
type. Mutation may be performed multiple times on a single
board after crossover is completed.

Parent 1 Parent 2
Fitness = 0.56 Fitness = 0.35

Child
Fitness = TBD

Figure 3: The 2D array representation of an Aftackers and
Defenders board. Crossover is shown, using Parent 1 as a
template and Parent 2 as a replacement sub-array (black out-
line). A tile from resulting board is then mutated (red out-
line), with the fitness of the new child to be calculated later.

Evaluating Feasibility and Fitness Each board chromo-
some contains two fitness functions which determine where
they fail in terms of feasibility and fitness. The constrained
fitness dictates whether they are within the infeasible pop-
ulation, and the feasible fitness ascertains how optimal of a
board it is.

Constrained fitness is calculated by averaging the con-
straint factors listed in Table 2. If the constrained average is
1, then this chromosome is feasible. Feasible fitness is mea-
sured by calculating the loss from the agent’s loss network
on the given map. The larger the loss, the higher the feasible
fitness for the chromosome.



Factor Description Network | Curriculum

Separate Quads | % of sources in different board quadrants DQN 1 50 + 100% randomly constructed maps

Home Paths % of sources that initialize with a DQN 2 50 + 100% evolutionarily-curated maps
path to home tile DQN 3 50 + 50% randomly constructed maps &

Home Center 1 if home is near center of board, else 0 50% evolutionarily-curated maps

Home Blocks 1 if no blocks near home, else O

Table 2: The constraint factors present in the generator

4.4 Procedure

To evaluate the effectiveness of an evolutionarily-based cur-
riculum inside a reinforcement learning training loop, we
created several training schedules. A Double Dueling Deep
Q Network (Wang et al. 2016) (DDDQN) using prioritized
replay and a separate loss network was trained from initial-
ization on each schedule. Figure 4 displays the architecture
of this network, and Figure 6 displays the separate loss net-
work.

The replay bank of the DDDQN holds 20,000 training
experiences using hyperparameters o = 0.6, 3y = 0.4 an-
nealed to 5 = 1.0 over the first 1000 games. To create expe-
riences for the replay bank, the network plays a map from A¢-
tackers and Defenders, after which it stores all encountered
initial states, actions, next states, and rewards as experiences
in the bank. The network updates its weights every 5 maps
it plays. A training cycle consists of 250 batches which con-
tain 32 samples selected according to prioritized replay. The
Q-value update uses a future discount factor v = 0.99. The
loss of each individual experience is used to update the pri-
ority. Afterwards, the loss network is trained using the initial
state as input and the loss as the target.

All schedules begin with 50 maps created using a con-
structive generator to train the loss network such that its
output is usable to assess a maps loss potential. This con-
structive generator provides an undirected random sampling
of the game space. The 50 starting maps are used are the
identical for every schedule. After these initial maps, the
schedules differ. The first of these schedules continues to
contain only maps constructed by the constructive generator.
The second of these schedules contains only evolutionarily-
curated maps. The third network contained equal mix of ran-
domly generated maps and evolutionarily-curated maps. Ta-
ble 3 defines each network’s training curriculum.

For each schedule, the network was tested and scored on
a fixed set of 1000 randomly generated maps after every 200
training maps. The network was optimizing to slay the max-
imum amount of attackers over the course of play and was
scored based on how many of these attackers were slain be-
fore an attacker reached the home tile. Training continued
until the network failed to improve for two consecutive test-
ing cycles.

5 Results & Discussion

Here, we present the results of the previously described
case study. We compare the results of the fully-evolved-
curriculum-trained network (full network), the mixed-
evolved-curriculum-trained network (mixed network), and

Table 3: The networks and their training curriculum ratios

the randomly-generated-curriculum-trained (constructive
network) trained on randomly sampled maps.

As Figure 7 demonstrates, the full network generalizes
well within 400 maps of training with a score of 21.47, peak-
ing after just 1,600 maps at 22.14. In comparison, the con-
structive network never reaches this score. Even after train-
ing on 6,800 maps, it only peaks at 20.83 at 1,600 maps.
The mixed network peaked at 20.22 after 2, 000 maps which
is slightly below the constructive network’s peak.

Figure 5 displays the loss of each network. Each tick dis-
plays the average loss of from a training cycle containing
250 batches, out to a total of 3, 500 maps. The full network
starts out at 14.44, higher than the constructive network at
12.67. This suggests that the full network learning was pre-
sented with maps which high learning potential, as expected.
Very quickly the two networks converge and hover between
7.5 and 9 which corresponds the full network’s peak perfor-
mance within the first several hundred maps. The construc-
tive network gradually increases over time to 10 then stabi-
lizes after it reached peak performance. Contrary to expec-
tations, the mixed network on the other hand shows a much
higher loss than either of the other two networks starting at
40.95 and remaining substantially higher ranging from 10 to
14.

This suggests that the mixed network failed to generalize
when presented with an equal mix of evolved maps and gen-
erated maps. The network appears to have learned how to
discriminate evolve maps from randomly generated maps in
a manner that harmed performance on the test set. Specifi-
cally, the network learned two classes of strategies: evolved
and constructive. As a result, the learning from evolved ex-
amples would not generalize correctly to constructive maps
that were used in the testing set. By contrast, the full net-
work only saw evolved maps after the first 50 maps and was
able to generalize the strategies learned from evolved maps
to randomly generated maps in the test set.

Lastly, the sole requirement of the evolutionary genera-
tor is to specify the parameters of the game itself and is
generalizable. The network informs the generator of its loss
function which makes it not specific to any domain. It is
sufficient for the network set up to have the ability to inter-
act with the game as the architecture is not dependent on it.
Since both halves of the systems (generator and network) are
generalizable themselves, slight modifications tot he system
can make it adapt very well to a new scenario.

6 Conclusion

In this paper, we have introduced evolutionarily-curated cur-
riculum learning as a new methodology to train reinforce-
ment agents. We performed a case study using a game we
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Figure 5: The loss over time for the training of each network.
Loss was collected every 5 maps of training by averaging the
loss across the 5 maps.

created called Attackers and Defenders to prove the validity
and effectiveness of this new method. Specifically, we tested
a Double Dueling Deep Q-network (DDDQN) with priori-
tized replay and a separate loss network using this method.

Based on our results, our initial hypothesis that
evolutionarily-curated curriculum learning helps networks
generalize better and faster than undirected sampling, has
been proven true in this environment. Even after nearly
three times the amount of training time, the constructive
trained network never approaches the performance of the
full evolutionarily-curated network. Therefore, it appears
that this new training methodology, ECCL, can be used to
both expedite training and increase generalization or max
performance.

However, the mixed network does not appear to perform

as well despite the fact that its loss values are much higher.
This was a result we did not initially expect, allowing for any
amount of evolutionarily-based curriculum learning would
improve network training. Upon inspection, the mixed net-
work spent considerable effort in differentiating between
maps coming from the constructive generator vs. the evolu-
tionary generator. This suggests that a discriminator network
trained to predict whether a map was constructed or evolved
could be added to the evolutionary generator’s fitness func-
tions. Another possibility would be using a similarity metric
in fitness to ensure evolved maps are sufficiently different
from previously evolved maps to prevent the network from
learning to recognize evolved maps.

Given the generalizability of ECCL as in the discussion
from the previous section, as it only requires a data genera-
tor and a game-playing agent architecture, we also expect it
to work well with AlphaGo Zero-based agents as well, and
leave that open for future work.
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