
Application of self-play deep reinforcement learning to “Big 2”, a four-player
game of imperfect information

Henry Charlesworth
Centre for Complexity Science

University of Warwick, Coventry
United Kingdom

Abstract

We introduce a new virtual environment for simulating
a card game known as “Big 2”. This is a four-player
game of imperfect information where players aim to
play all of their cards as quickly as possible. The nov-
elty of the game compared to other card games like
Poker is mainly in its complicated action space, where
combinations of up to 5 cards a time can be chosen
from an initial hand of 13 cards. This makes it chal-
lenging for many commonly used reinforcement learn-
ing algorithms, and we suggest that it could be a use-
ful testbed for testing new multi-agent learning algo-
rithms. We then use the recently proposed “Proximal
Policy Optimization” algorithm(Schulman et al. 2017)
to train a neural network to play the game, purely learn-
ing via self-play, and find that it is able to reach a level
that outperforms a number of amateur human players
after only a relatively short amount of training time.

Introduction
Big 2 is a four player card game of Chinese origin, played
widely throughout East and South East Asia (it also com-
monly goes by the names “Big Deuce” and “Deuces”,
amongst others). There are many regional variations in the
rules, however the basic idea involves a standard deck of 52
playing cards being shuffled and dealt out to four players,
such that each player starts with 13 cards. Players then take
it in turns to either play a hand or pass, with basic aim of
being the first player to be able to discard all of their cards
(see section 2 for more details about the specific rules). In
this work, we introduce a virtual environment to simulate
the game which is ideal for the application of multi-agent
reinforcement learning algorithms. We then go on to use this
to train a deep neural network to learn how to play, purely
using self-play reinforcement learning.

In general, multi-agent environments pose an interest-
ing challenge for reinforcement learning algorithms, and
many of the techniques which work well for single-agent
environments cannot be readily adapted to the multi-agent
domain(Lowe et al. 2017). Approaches such as Deep Q-
Networks(Mnih et al. 2015) struggle because multi-agent
environments are inherently non-stationary, since the other

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

agents in the environment are themselves improving with
time. This prevents the straightforward use of experience
replay which is necessary to stabilize the algorithm. Stan-
dard policy gradient methods also struggle due to the large
variances in gradient estimates that arise in the multi-agent
setting, which often increase exponentially with the num-
ber of agents. Although other methods are able to partially
overcome these issues (for example Proximal Policy Opti-
mization(Schulman et al. 2017), which we use in this work),
there is still an active research effort to improve the state of
the art multi-agent reinforcement learning algorithms. One
necessary component of this is having a good range of dif-
ferent, challenging environments to test new algorithms out
on. Whilst there already exist a number of environments
that are useful for this purpose, such as the OpenAI com-
petitive environments (Bansal et al. 2018) and the Unity(?)
platform, we believe that Big 2 could be a useful addition
to these since it is relatively accessible whilst still requir-
ing complex strategies to play well. In particular, there are a
number of reasons why this is an interesting environment
to study. The first of these is that it is a game of imper-
fect information, since each individual player is unaware of
what cards their opponents hold and so do not have access
to a full description of the current game state. A second rea-
son is that it is a four-player game. To date, a majority of
the most remarkable successes that have arisen from self-
play deep reinforcement learning such as AlphaGo(Silver et
al. 2016) and AlphaZero(Silver et al. 2017) have been con-
fined to two-player games of perfect information, e.g. Chess,
Go and Shogi. Whilst there have also been significant suc-
cesses in Poker playing programs such as Libratus(Brown
and Sandholm 2017) and DeepStack(Moravčı́c et al. 2017)
these have largely been confined to the heads-up (i.e. two-
player) versions of the game, and require much more com-
putational power to make a decision compared to the ap-
proach we take in this work — for example DeepStack uses
a heuristic search method adapted to imperfect information
games, whereas we only use the trained neural network. In
addition to this, the action space of Big 2 is much more com-
plicated than in Poker, with up to 1695 actions available in a
given state. Another approach which warrants a mention and
does directly apply self-play deep reinforcement learning is
“neural fictitious self-play”(Heinrich and Silver 2016). Here
an attempt is made to learn a strategy which approximates a



Figure 1: A typical start to a game (although note that players are not aware of the cards held by the other players). All 52
cards are dealt out so that each player begins with 13 cards. The player with the 3 of diamonds (here player 4) must start, and
plays this as a single card hand. Subsequent players must play a higher single card or pass (skip their go). This continues until
everyone passes, at which point the last player who played a card gains “control”. A player with control can choose to play any
valid 1,2,3,4 or 5 card hand (see text for details). Subsequent players must then play a better hand of the same number of cards
or pass, until someone new gains control. This continues until one player has managed to play all of their cards.

Nash equilibrium, however it has only been applied to sim-
ple games with no more than two players. As such, it would
most probably struggle to learn to play Big 2 well.

Rules and basic strategy
In this section we give a detailed description of the rules
of the game (or rather, the rules of the particular variation
which we are studying), as well as some brief comments on
the basic strategy. At the start of each game a standard deck
of playing cards (excluding jokers) is dealt out randomly,
such that each of the four players starts with 13 cards. The
“value” of each card is ordered primarily by number, with 3
being the lowest and 2 being the highest (hence Big 2), i.e.
3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < J < Q < K <
A < 2, and then secondly by suit, with the following order:
Diamonds < Clubs < Hearts < Spades. Throughout the
rest of the paper we will refer to cards by their number and
the first letter of their suit, so for example the four of hearts
will be referred to as the 4H. This means that the 3D is the
lowest card in the game and the 2S is the highest. In this vari-
ant of the rules, the player who is dealt the 3D has to play this
card first on its own. The next player (clockwise) then either
has to play a higher single card or pass, and this continues
until either each player passes or someone plays the 2S. At
this point, the last player to have played a card is “in control”

and can choose to play any single card or any valid poker
hand. These include pairs (two cards of the same number),
three-of-a-kinds (three cards of the same number), four-of-
a-kinds (four cards of the same number), two-pairs, straights
(5 cards in numerical order, e.g. 8, 9, 10, J,Q), flushes (5
cards of the same suit), full-houses (3 cards of one number,
2 of another number) and straight-flushes (both a straight
and a flush). Subsequent players must then either play a bet-
ter hand of the same number of cards, or pass. This contin-
ues until everyone passes, at which point the last player gets
control and can again choose to play any valid hand that they
wish. The game finishes once one player has gotten rid of all
of their cards, at which point they are awarded a positive re-
ward equal to the sum of the number of cards that the three
other players have left. Each of the other players is given a
negative reward equal to the number of cards they have left
— so for example, if player 1 wins and players 2,3 and 4
have 5, 7 and 10 cards left respectively then the rewards as-
signed will be {22,−5,−7,−10}. This provides reasonable
motivation to play to win in many situations, rather than just
trying to get down to having a low number of cards left.

In terms of hand comparisons for hands consisting of
more than one card, we have the following rules: two-card
hands (i.e. pairs) are ranked primarily on number, such
that e.g. [5x, 5y] < [10w, 10z] regardless of the suits, and



then secondly on suit with the pair containing the high-
est suit winning, e.g. [10C, 10H] < [10D, 10S]. For three
card hands only the number is important since we never
have to compare three card hands of the same number.
For four card hands, when we compare two-pairs only
the highest pair is important (so e.g. [QD,QS, JH, JS] <
[KC,KH, 4C, 4H]), and a four-of-a-kind beats any two-pair.
For five card hands we have that: Straight < Flush <
Full House < Straight Flush. If we are comparing straights,
then whichever one contains the largest individual sin-
gle card will win, and similarly for comparing flushes.
Full houses are compared based on the number which ap-
pears three times, so for example: [2S, 2H, 5C, 5H, 5S] <
[3S, 3H, 10H, 10S, 10C].

The skill of the game is in coming up with a plausible
strategy for being able to play all of one’s cards. This often
needs to be adapted as a result of the strategies which one’s
opponents play, and includes identifying situations when the
chances of winning are so low that it is best to try and aim for
ending with a low number of cards, rather than actually play-
ing to win. This involves knowing when to save hands for
later that one could play immediately, but which might turn
out to be a lot more useful at a later stage of the game. Whilst
there is certainly a significant amount of luck involved in
terms of the initial hand that one is dealt, such that the result
of any individual game shouldn’t be taken to be too mean-
ingful, if one plays against more experienced opponents it
will quickly become apparent that there is also a large skill
component involved. As such, over a large number of games
a good player will have a significant edge over a less experi-
enced player in the long run.

Virtual Big 2 environment
A virtual environment written in Python which simulates the
game is available alongside the source code used for training
the neural network to play here: https://github.
com/henrycharlesworth/big2_PPOalgorithm.
The environment operates in a way which is fairly similar
to those which are included in OpenAI Gym(Brockman et
al. 2016) but with a few differences. The primary functions
used are:
#set up and reset environment:
env = big2Game(); env.reset()
players_go, current_state,
currently_available_actions =
env.getCurrentState()
#play chosen action and update game:
reward, done, info = env.step(action)

There is also a parallelized implementation of the environ-
ment included. This uses Python’s multiprocessing module
to run multiple different games at the same time on different
cores, which is particularly useful for the method we used to
train a neural network to play, which we describe in section
4.

Describing the state of the game
One of the most important steps for being able to train a neu-
ral network to play is to determine a sensible way of encod-

ing the current state of the game into a vector of input fea-
tures. Technically a full description of the current game state
would involve information about the actual hand the player
has as well as every other hand that each player had played
before them, as well as any potentially relevant information
about what you believe the other players’ styles of play to
be. Given that it is possible for some games to last over 100
turns, storing complete information like this would lead to
potentially huge input states, containing a large amount of
information which is not particularly important when mak-
ing most decisions. As such, we design an input state by
hand which contains a small amount of “human knowledge”
about the things that we consider to be important when mak-
ing a decision in the game. Note that this is the only stage
at which any outside knowledge about the game is built into
our method for training a neural network, and we have tried
to keep this fairly minimal. Full details can be found in Ap-
pendix A.

Representing the possible actions
Modelling the available actions takes a bit more thought,
since generally there are many ways you can make poker
hands from a random set of 13 cards. What we need is a sen-
sible and systematic way of indexing these. The approach
we take is to ensure that player’s hands are always sorted in
order, and then define actions in terms of their indices within
the sorted hand. So for example, if we are considering ac-
tions involving playing five cards, and a player has the hand
[3C, 3S, 4H, 6D, 7H, 8C, 9D, 10C,KS,AC,AS, 2C, 2S],
then we could define the action of playing the straight
[6D, 7H, 8C, 9D, 10C] in terms of the ordered card in-
dices within the hand (using 0 as the starting index):
[3, 4, 5, 6, 7]. If instead we were thinking of the flush:
[3C, 8C, 10C,AC, 2C], this would correspond to indices
[0, 5, 7, 9, 11]. This works fine, because the input state to
the neural network tells us about which card value actually
occupies each of the card indices in the current hand. We
can then construct look up tables that convert between card
indices and a unique action index (see Appendix B for
details and pseudocode). Doing this we find that there are
a total of 1695 different actions that could potentially be
available in any given state, although a majority of time the
actual number allowed will be significantly lower than this.

Training a network with self-play
reinforcement learning

To train a neural network to play the game we make use of
the “Proximal Policy Optimization” (PPO) algorithm pro-
posed recently by Schulman et al(Schulman et al. 2017).
This has been shown to inherit the impressive robustness
and sample efficiency properties previously found with
“Trust Region Policy Optimization” methods(Schulman et
al. 2015a) whilst being significantly easier to implement. It
has also been shown to be successful in a variety of rea-
sonably complicated competitive two-player environments,
such as “Sumo” and “Kick and Defend” (Bansal et al. 2018).
In these examples, huge batches are generated by running
many of the environments in parallel which allows the algo-

https://github.com/henrycharlesworth/big2_PPOalgorithm
https://github.com/henrycharlesworth/big2_PPOalgorithm


rithm to overcome the problem of dealing with large vari-
ances.

The algorithm is a policy-gradient based actor-critic
method in which we use a neural network to output both a
policy π(a|s) over the available actions a in any given state
s, alongside an estimate of a state value function which is
used to estimate the advantage Â(a|s) of taking each ac-
tion. We make use of the “generalized advantage estimation”
(Schulman et al. 2015b) algorithm to do this. Further de-
tails of the PPO algorithm (including the hyperparameters
used) and the neural network architecture can be found in
Appendix C.

We initialise a neural network with random weights, make
four copies of this, and then get them to play against each
other. This means at first they are making moves completely
at random. We generate mini-batches of size 960 by running
48 separate games in parallel, each for 20 steps at a time. We
then train for 5 epochs on each batch using the ADAM opti-
mizer(?). Note that these are significantly smaller than those
used in (Bansal et al. 2018), where batches of hundreds-of-
thousands were used. We then run this for 150, 000, 000 total
steps, corresponding to 156, 250 training updates or approx-
imately 3 million games. This was carried out on a single
PC with four CPU cores and a single GPU, taking about 2
days to complete. We did not find that it was necessary to
use any kind of opponent sampling, hence the neural net-
works were always playing the most recent copies of them-
selves throughout the entire duration of training. However, it
would be interesting to see if opponent sampling could lead
to any further improvements. The hyperparameters we used
were chosen to be similar to those which had worked pre-
viously for other tasks, but interestingly we did not have to
play around with any of these at all to get the algorithm to
work well. It is possible we just got lucky, and we have not
conducted a rigorous study of different parameter variations,
however this seems to back up the claim that PPO is remark-
ably robust, unlike many other deep reinforcement learning
algorithms.

It is also worth noting that unlike AlphaGo and AlphaZero
which use “Monte Carlo Tree Search”(Silver et al. 2016)
(MCTS), we do not supplement the neural network with any
kind of search of future game states at all. This means that
we only provide the current game state to the neural net-
work, and the decision is made solely based on this. Given
that Big 2 is a game which requires significant planning, it
is interesting that we are able to achieve such good results
in this way. Although we have not tested this, it seems likely
that some kind of generalization of MCTS to imperfect in-
formation games, of which there are a few, could provide
a significant improvement on our results. Having said that,
it is a very nice property that the trained agents are able to
make their decisions with very little delay.

Results
Fully evaluating how good the network is able to play is not
as easy as it may seem. Since this is a game of imperfect
information, an ideal thing to be able to do would be to cal-
culate the exploitability of the network’s strategy, however

this is difficult to do for a complex game like Big 2. As an
extremely first metric of the network’s performance we sim-
ply evaluate its average score when it plays against three
random opponents, and track how this improves over time.
This is shown in figure 2(a), where we see that initially there
is a rapid improvement in performance (at update 0, the av-
erage reward is 0, but the graph is cut off). For the rest of the
training period we see the increase is more gradual, which is
perhaps not surprising as (a) the networks are not trying to
get better against random opponents, but against the most re-
cent copy of themselves and (b) there’s only so good the per-
formance can get against someone playing randomly since
luck plays a significant role in the game. Figure 2(b) shows
perhaps a more interesting measure of how the network per-
forms playing against three earlier copies of itself. That is,
we take the final trained network and make it play against
earlier versions which we saved, evaluating how well it does
against all of these. We see that there appears to be continual
improvement throughout the training, with the final network
beating all of the previous ones.

As a more interesting test we designed a front-end,
making it easy for humans to play against the trained
network. This is available to try for yourself, linked to
from the Github repository (https://github.com/
henrycharlesworth/big2_PPOalgorithm). We
then gathered some data of a different human players
against three of the trained neural networks over a number
of games. Whilst none of these players could be considered
professional, all had a decent amount of experience playing
the game and so were not coming into it unprepared. There
is a definite issue here in that Big 2 is a game where there is
a large variance in the scores achieved, and games involving
humans take quite a long time. As such, we were not able to
gather as much data as we would have liked. Nevertheless,
the data we have gathered is included in Appendix D, and
we see that in all but one case the human players ended with
a negative score (and this exception was over a relatively
small number of games). Since Big 2 is a zero-sum game, a
negative score can effectively be counted as a loss, and so
we see that the trained network significantly outperformed
the humans overall.

Conclusion

In this paper we have introduced a novel environment to sim-
ulate the game of “Big 2”, specifically designing it as an en-
vironment to test reinforcement learning algorithms on. We
have also been able to successfully train a neural network to
play the game to a standard which exceeds amateur human
players, purely using self-play deep reinforcement learning,
and without the needing to supplement this with any kind
of tree search over possible future states in order to make a
decision. The game of “Big 2” is a challenging game for a
number of reasons we have discussed, and our trained neu-
ral network certainly does not play optimally. As such we
would encourage anyone working on multi-agent learning
techniques to consider this environment as a test for their
algorithms.

https://github.com/henrycharlesworth/big2_PPOalgorithm
https://github.com/henrycharlesworth/big2_PPOalgorithm


Figure 2: (a) Average score per game of the trained network against three random opponents as the training progresses. (b) The
final network against three copies of the network at earlier times in the training. All plotted points are averaged over 10,000
games. Note that the first point plotted is after 1000 updates rather than 0.

Acknowledgements
Thanks to Liam Hawes, Katherine Broadfoot, Terri Tse,
Kieran Griffiths, Shaun Fortes and James Frooms for agree-
ing to play competitive games against the trained network,
and to Professor Matthew Turner for reading this manuscript
and providing valuable feedback. This work was supported
by the UK Engineering and Physical Sciences Research
Council (EPSRC) grant No. EP/L015374/1, CDT in Mathe-
matics for Real-World Systems.

Appendix A: Encoding the current game state
Figure 3 shows the input that is provided to the network.
Firstly the player’s cards are sorted into order of their value
(from 3D to 2S) and labelled from 1 up to a maximum of
13. For each card in the player’s current hand there are then
13 inputs that are zero or one to encode the card’s value, and
then four more to encode the suit. As well as this we pro-
vide information about whether the card can be included in
any combination of cards (i.e. is it apart of a pair, a straight
etc). For each of the three opponents we keep track of the
number of cards they have left as well as well as certain
information about what they’ve played so far. In particular,
we keep track of whether at any point during the game so
far they’ve played any of the highest 8 cards (AD - 2S), as
well as if they’ve played a pair, a two pair, a three of a kind,
a straight, a flush or a full house. The network is also pro-
vided information about the previous hand which has been
played (both its type and its value), as well as the number of
consecutive passes made prior to the current go, or if it cur-
rently has control. Finally, we provide it with information
about whether anyone has played any of the top 16 cards.
This is potentially important for keeping track of which sin-
gle is the highest left in play, and hence would be guaranteed
to take control if played. We cut this off at 16 to reduce the
size of the input, and because it is rare for a high-level game
to still be going when the highest cards left are lower than a

queen.
This is the way we choose to represent the current game

state when training our network, and is also the state which
is returned by the env.step() function in the game en-
vironment. However, the big2Game class also records all
hands which are played in a game, and so it should be rel-
atively simple to write a new function which includes more
or less information if this is desired.

Appendix B: Indexing the action space
Here we give the pseudocode for generating “look-up ta-
bles” which can be used to systematically index the possi-
ble actions that are available in any given state. We consider
separate look up tables for actions containing different num-
bers of cards. In the case of five-card hands it is possible,
because of flushes, for any combination of card indices to be
a valid hand. This means that under this representation there
are
(
13
5

)
= 1287 possible five-card actions. The idea is then

to construct a mapping between each allowable set of indices
{c1, c2, c3, c4, c5} and a unique action index i. Algorithm 1
does this by creating a matrix “actionIndices5” which can
be indexed with the card indices to return i, and then includ-
ing a reverse-look up table which maps i back to the card
indices. In the case of four-card actions there are constraints
on the indices that can actually be used to make a valid hand,
since the only valid four-card hands are two pairs and four
of a kinds. This means that, for example, the combination
of indices [2, 8, 9, 10] could never be a valid hand as the
cards (which are sorted in order) in positions 2 and 8 could
never correspond to the same number, and hence cannot be a
pair. Consequently rather than there being

(
13
4

)
= 715 pos-

sible four-card actions, we find that are there are actually
only 330 under this representation. Similar constraints ap-
ply to two and three card actions where we find that there
are 33 and 31 possible actions respectively, and then trivially
there are 13 possible one-card actions. In total this gives us



Figure 3: Input state provided to the neural network which encodes the current state of the game. This includes information
about the player’s own hand as well as some limited information about what each of the opponents has played so far and other
things which have occurred during the game up until the present point. This leads to an input of size 412 made up of zeros and
ones.

1287 + 330 + 31 + 33 + 13 + 1 = 1695 potential moves
that could be allowable in any given state (the extra 1 is ac-
counting for being allowed to pass). In the python imple-
mentation the big2Game class has a function availAcs =
big2Game.returnAvailableActions() which re-
turns an array of size 1695 of 0s and 1s, depending on
whether each potential action is actually available for the
current player in the current game state. This vector is or-
dered with one-card actions in indices 0 − 12, two-card
actions from 13 − 45, three-card actions from 46 − 76,
four-card actions from 77 − 406, five-card actions from
407 − 1693 and then finally 1694 corresponding to the
pass action. The big2Game.step(...) function takes
an action index (from 0 − 1694) as its argument and
big2Game.getCurrentState() returns as its third
value a vector of 0s (corresponding to actions allowed in
current state) and −∞ (not allowed). This was just because
it was convenient to use these values instead of 0s and 1s
when using a softmax over the neural network output to rep-
resent the probability distribution over allowed actions, but
is straightforward to change.

Algorithm 1 Look up tables for five-card actions
[1] Initialize: actionIndices5 as a 13 × 13 × 13 × 13 × 13
array of zeros Initialize: inverseIndices5 as an 1287× 5 ar-
ray of zeros Initialize: i = 0 c1 = 0 to 8 c2 = c1 + 1 to
9 c3 = c2 + 1 to 10 c4 = c3 + 1 to 11 c5 = c4 + 1 to 12
actionIndices5[c1, c2, c3, c4, c5] = i inverseIndices5[i, :] =
[c1, c2, c3, c4, c5] i += 1

Algorithm 2 Look up tables for four-card actions
[1] Initialize: actionIndices4 as a 13 × 13 × 13 × 13 array
of zeros Initialize: inverseIndices4 as an 330 × 4 array of
zeros Initialize: i = 0 c1 = 0 to 9 n1 = min(c1 + 3, 10)
c2 = c1 + 1 to n1 c3 = c2 + 1 to 11 n2 = min(c3 +
3, 12) c4 = c3 + 1 to n2 actionIndices4[c1, c2, c3, c4] = i
inverseIndices4[i, :] = [c1, c2, c3, c4] i += 1

Algorithm 3 Look up tables for three-card actions
[1] Initialize: actionIndices3 as a 13 × 13 × 13 array of
zeros Initialize: inverseIndices3 as an 31 × 3 array of ze-
ros Initialize: i = 0 c1 = 0 to 10 n1 = min(c1 + 2, 11)
c2 = c1 + 1 to n1 n2 = min(c1 + 3, 12) c3 = c2 + 1
to n2 actionIndices3[c1, c2, c3] = i inverseIndices3[i, :] =
[c1, c2, c3] i += 1

Algorithm 4 Look up tables for two-card actions
[1] Initialize: actionIndices2 as a 13×13 array of zeros Ini-
tialize: inverseIndices2 as an 33×3 array of zeros Initialize:
i = 0 c1 = 0 to 11 n1 = min(c1 + 3, 12) c2 = c1 + 1 to
n1 actionIndices2[c1, c2] = i inverseIndices2[i, :] = [c1, c2]
i += 1



Appendix C: Details about the training
algorithm/ neural network architecture

If the weights and biases of the neural network are contained
in a vector θ then to implement the PPO algorithm we start
by defining the ”conservative policy iteration” loss estimator
(Kakade and Langford 2002)

LCPI(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
(1)

where here the expectation is taken with respect to a fi-
nite batch of samples generated using the current policy
parameters θold. Trust region policy optimization methods
maximize this loss subject to a constraint on the KL diver-
gence between πθ and πθold to prevent policy updates oc-
curring which are too large. PPO is able to achieve essen-
tially the same thing by introducing a new hyperparameter
ε � 1 and instead using a clipped loss function that re-
moves the incentive to make large policy updates. If we de-
fine rt(θ) =

πθ(at|st)
πθold (at|st)

, then PPO considers instead maxi-
mizing the following “surrogate loss function”:

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε)

)]
(2)

We then also introduce a value function error term, as well
an entropy bonus to encourage exploration, such that the fi-
nal loss function to be optimized is

L(θ) = Êt
[
LCLIP (θ)− a1LV F (θ) + a2S[πθ](st)

]
(3)

where a1 and a2 are hyperparameters, S is the entropy and
LV F = (Vθ(st)− V targett )2 is the squared-error value loss.
We estimate the returns and the advantages using ”general-
ized advantage estimation”, using the following estimate:

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1 (4)

where T is the number of time steps we are simulating to
generate each batch of training data, γ is the discount factor,
λ is another hyperparameter and δt = rt+γV (st+1)−V (st)
(with rt being the actual reward received at time step t).

When a batch is generated by running N separate games
each for T time steps and the advantage estimates are made
training then occurs for K epochs using a minibatch size of
M . The hyperparameters we used for our training were the
following: N = 48, T = 20, γ = 0.995, λ = 0.95,M =
240,K = 4, a1 = 0.5, a2 = 0.02 with a learning rate α =
0.00025 and ε = 0.2 which were both linearly annealed to
zero throughout the training.

In terms of the neural network architecture we used this is
shown in figure 4. We have an initial shared hidden layer of
512 RelU activated units which is connected to two separate
second hidden layers each of 256 RelU activated units. One
of these produces an output corresponding to the estimated
value of the input state whilst the other is connected to a
linear output layer of 1695 units which represents a proba-
bility weighting of each potentially allowable move. This is
then combined with the actually allowable moves to produce
a probability distribution. The rationale for having a shared
hidden layer is that there are likely to be features of the input

Figure 4: Architecture of the neural network used.

state that are relevant for both evaluating the state’s value as
well as the move probabilities, although we did not run any
tests to quantify whether this is really significant. All layers
in the network are fully connected.

Appendix D: Results against human players
Results against seven different human players are shown in
table 1.

Figure 5: Probability distribution of the rewards received
from the games between the AI and various human play-
ers (see table 1 for a summary of results). For comparison
the black line is the probability distribution from four of
the fully-trained neural networks playing against themselves
over 1 million games.

Although we only have a relatively small data set and Big
2 is a game of large variance in the scores, it is clear that
on the whole the neural network quite significantly outper-
forms the human players. Of the seven players who played
only one of them finished with a positive score, and this was
from a relatively small number of games. If we look at the
total scores of all of the human players combined we find
an average score of −0.96 ± 0.38 per game, which shows
that on the whole the trained neural network seems to have
a significant advantage.



Player 1 Player 2 Player 3 Player 4 Player 5 Player 6 Player 7 Total
Games Played 250 127 100 55 50 50 31 664
Games Won 68 (27.2%) 25 (19.7%) 19 (19.0%) 21 (38.2%) 5 (10.0%) 4 (8.0%) 7 (22.5%) 149 (22.5%)
Final Score -128 -118 -154 104 -100 -231 -10 -637

Average Score -0.51 -0.93 -1.54 1.89 -2.00 -4.62 -0.32 -0.96
Standard Error 0.68 0.86 0.88 1.54 1.09 0.93 1.52 0.38

AI Scores 51, 58, 19 15, -78, 181 73, -143, 224 -71, -15, -18 86, 8, 6 137, 116, -22 124, -77, -37 415, -131, 353
AI (1) Average 0.20± 0.67 0.12± 0.95 0.73± 1.04 -1.29± 1.23 1.72± 1.48 2.74± 1.70 4.00± 2.07 0.63± 0.41
AI (2) Average 0.23± 0.67 -0.61± 0.89 -1.43± 0.84 -0.27± 1.35 0.16± 1.39 2.32± 1.75 -2.48± 1.31 -0.20± 0.39
AI (3) Average 0.08± 0.65 1.43± 1.09 2.24± 1.12 -0.33± 1.20 0.12± 1.29 -0.44± 1.48 -1.19± 1.37 0.53± 0.41

Table 1: Data from games of seven different human players vs. 3 of the trained neural networks. Standard errors on the average
scores are calculated as σm = σ/

√
N where σ is the standard deviation of the game scores and N is the number of games

played.

We can also look at the probability distribution of the re-
wards (figure 5) to potentially get more insight into how the
neural network plays compared with the human players, al-
though really we do not have enough data to say anything
conclusive. One of the main differences we see is that the hu-
man players seem to find themselves left with a large num-
ber of cards more frequently than the AI does, perhaps as the
AI is better able to identify situations where the chances of
winning is very low and so knows just to get rid of as many
cards as possible. It also seems like the AI is slightly better
at ending the game early, and therefore achieving the higher
scores. This could also be the reason why human players
tend to have more cards left more often, although it’s diffi-
cult to say anything concrete here.

References
[Bansal et al. 2018] Bansal, T.; Pachoki, J.; Sidor, S.;
Sutskever, I.; et al. 2018. Emergent complexity via multi-
agent competition. In ICLR.

[Brockman et al. 2016] Brockman, G.; Cheung, V.; Petter-
son, L.; Schneider, J.; et al. 2016. Openai gym. arXiv
preprint arXiv:1606.01540.

[Brown and Sandholm 2017] Brown, N., and Sandholm, T.
2017. Superhuman ai for heads-up no-limit poker: Libra-
tus beats top professionals. Science.

[Heinrich and Silver 2016] Heinrich, J., and Silver, D. 2016.
Deep reinforcement learning from self-play in imperfect-
information games. In NIPS Deep Reinforcement Learning
Workshop.

[Kakade and Langford 2002] Kakade, S., and Langford, J.
2002. Approximately optimal approximate reinforcement
learn- ing. In ICML, volume 2, 267–274.

[Lowe et al. 2017] Lowe, R.; Wu, Y.; Tamar, A.; Harb,
J.; et al. 2017. Multi-agent actor-critic for mixed
cooperative-competitive environments. arXiv preprint
arXiv:1706.02275.

[Mnih et al. 2015] Mnih, V.; Kavukcuoglu, J.; Silver, D.;
Rusu, A.; et al. 2015. Human-level control through deep
reinforcement learning. Nature 518:529–533.

[Moravčı́c et al. 2017] Moravčı́c, M.; Schmid, M.; Burch,
N.; Lisy, V.; et al. 2017. Deepstack: Expert-level artificial

intelligence in heads-up no-limit poker. Science 356:508–
513.

[Schulman et al. 2015a] Schulman, J.; Levine, S.; Moritz, P.;
Jordan, M.; et al. 2015a. Trust region policy optimization.
arXiv preprint arXiv:1502.05477.

[Schulman et al. 2015b] Schulman, J.; Moritz, P.; Levine, S.;
Jordan, M.; et al. 2015b. High-dimensional continuous con-
trol using generalized advantage estimation. arXiv preprint
arXiv:1506.02438.

[Schulman et al. 2017] Schulman, J.; Wolski, F.; Dhariwal,
P.; Radford, A.; et al. 2017. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.0634.

[Silver et al. 2016] Silver, D.; Huang, A.; Maddison, C.;
Guez, A.; et al. 2016. Mastering the game of go with deep
neural networks and tree search. Nature 529:484–489.

[Silver et al. 2017] Silver, D.; Schrittwieser, J.; Simonyan,
K.; Antonoglou, I.; et al. 2017. Mastering the game of go
without human knowledge. Nature 550:354–359.


	Introduction
	Rules and basic strategy
	Virtual Big 2 environment
	Describing the state of the game
	Representing the possible actions

	Training a network with self-play reinforcement learning
	Results
	Conclusion
	Appendix A: Encoding the current game state
	Appendix B: Indexing the action space
	Appendix C: Details about the training algorithm/ neural network architecture
	Appendix D: Results against human players

