
Backplay: ‘Man muss immer umkehren’
Cinjon Resnick∗

NYU
cinjon@nyu.edu

Roberta Raileanu∗

NYU
rr3009@nyu.edu

Sanyam Kapoor
NYU

sanyam@nyu.edu

Alexander Peysakhovich
FAIR

alexpeys@fb.com

Kyunghyun Cho
NYU, FAIR

kyunghyun.cho@nyu.edu

Joan Bruna
NYU, FAIR

bruna@cims.nyu.edu

Abstract

A long-standing problem in model-free reinforcement learn-
ing (RL) is that it requires a large number of trials to learn
a good policy, especially in environments with sparse re-
wards. We explore a method to increase the sample effi-
ciency of RL when we have access to demonstrations. Our
approach, Backplay, uses a single demonstration to construct
a curriculum for a given task. Rather than starting each train-
ing episode in the environment’s fixed initial state, we start
the agent near the end of the demonstration and move the
starting point backwards during the course of training until
we reach the initial state. We perform experiments in a com-
petitive four-player game (Pommerman) and a path-finding
maze game. We find that Backplay provides significant gains
in sample complexity with a stark advantage in sparse reward
settings. In some cases, it reached success rates greater than
50% and generalized to unseen initial conditions, while stan-
dard RL did not yield any improvement.

1 Introduction
An important goal of AI research is to construct agents
that can enter new environments and learn how to achieve
desired goals (Levine et al. 2016). A key paradigm for
this task is deep reinforcement learning, which has suc-
ceeded in many environments, including complex zero-sum
games such as Go, Poker, and Chess (Silver et al. 2016;
Moravcík et al. 2017; Silver et al. 2017). However, train-
ing an RL agent can take a very long time, particularly in
environments with sparse rewards. In these settings, the
agent typically requires a large number of episodes to stum-
ble upon positive rewards and learn even a moderately ef-
fective policy that can then be refined. Reward sparsity is
often resolved via hand-engineering a dense reward func-
tion. Such reward shaping, while effective, can also change
the set of optimal policies and have unintended side effects
(Ng, Harada, and Russell 1999; Clark and Amodei 2016).

We consider an alternative technique for accelerating RL
in sparse reward settings. The idea is to create a curricu-
lum for the agent via reversing a single trajectory (i.e. state
sequence) of reasonably good, but not necessarily optimal,

∗These two authors contributed equally.
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1. Backplay: We first collect a demonstration, from which
we build a curriculum over the states. We then sample a state ac-
cording to that curriculum and initialize our agent accordingly.

behavior. That is, we start our agent at the end of a demon-
stration and let it learn a policy in this easier setup. We then
move the starting point backward until the agent is training
only on the initial state of the task. We call this technique
Backplay (Figure 1).

Our experiments are in a maze environment where the
agent must find a path to a goal and Pommerman (Mul-
tiAgentLearning 2018), a complex stochastic four-player
competitive game. We use those to empirically show that
Backplay vastly decreases the number of samples required
to learn a good policy. In addition, we see that a Back-
play agent can outperform its corresponding demonstrator
and even learn an optimal policy when using a sub-optimal
demonstration. Notably, the Backplay agent is learns just as
well in environments with a single sparse reward as in those
with a dense shaped reward. This extends to a challenging
setup where it successfully generalizes to unseen Pommer-
man scenarios while the baselines fail to learn at all.

2 Related Work
The most related work to ours is an independent and con-
current blog post describing a method similar to Backplay
used to train policies on the challenging Atari game Mon-
tezuma’s Revenge (Salimans and Chen 2018). While both
propose training an RL agent by starting each episode from
a demonstration state based on a reverse curriculum, there
are a number of key differences between the two reports.

First, our work considers the problem of learning effective
policies in environments with various initial configurations,
each corresponding to a different demonstration. Second,
we analyze whether the technique can find optimal policies

when trained using sub-optimal demonstrations and the ex-
tent to which those policies can generalize to unseen ini-
tial conditions. Third, we do not use an adaptive sched-
ule based on the agent’s success rate to advance its start-
ing state because we did not find this to improve the over-
all performance or sample complexity. Fourth, we include
both empirical and theoretical analysis on the conditions un-
der which this approach is more effective than standard RL.
Finally, we also evaluate the method on a stochastic multi-
player game, which has additional complexities compared
to a deterministic single agent environment.

Behavioral cloning explicitly encourages a policy to
mimic an expert policy (Ross, Gordon, and Bagnell 2011;
Daumé, Langford, and Marcu 2009; Zhang and Cho 2016;
Laskey et al. 2016). Many such algorithms require access to
the expert’s policy or use supervision from the expert’s ac-
tions and/or states (Nair et al. 2017; Hester et al. 2017; Ho
and Ermon 2016; Aytar et al. 2018; Lerer and Peysakhovich
2018; Peng et al. 2018). In contrast, Backplay only requires
access to a single trajectory of states visited by the expert
and only uses these states to initialize a curriculum (Bengio
et al. 2009). Thus, it allows for the action space of the agent
to be different from that of the expert and could be used with
third-person demonstrations.

Other algorithms (Ranzato et al. 2015; Li et al. 2016;
Das et al. 2017a; Das et al. 2017b), primarily in dialog,
use a Backplay-like curriculum, albeit they utilize behav-
ioral cloning for the first part of the trajectory. This is a
major difference as we show that for many classes of prob-
lems, we only need to change the initial state distribution
and do not see any gains from warm-starting with imitation
learning. Backplay is more similar to Conservative Policy
Iteration (Kakade and Langford 2002), a theoretical paper
which presents an algorithm designed to operate with an ex-
plicit restart distribution.

(McAleer et al. 2018) frame the problem of solving the
Rubik’s cube as a sparse reward model-based RL task with
inputs generated by taking random actions from the goal
state. (Hosu and Rebedea 2016) use uniformly random
states of an expert demonstration as starting states for a
policy. Like Backplay, (Gao et al. 2018) show that using
a single loss function to learn a policy from both demon-
strations and rewards can outperform the demonstrator and
is robust to sub-optimal demonstrations. However, none of
those works impose a curriculum over the demonstration.

(Zhu et al. 2018) use a curriculum but manually tune it
for each ‘stage’ of the environment. Within each stage, they
use what we call Uniform training, which fails in our most
challenging environments.

The idea of using a reverse curriculum for sparse reward
reinforcement learning problems was proposed by (Florensa
et al. 2017), which uses a sequence of short random walks
to gradually initialize an RL agent from a set of start states
increasingly far from a known goal location. In contrast,
Backplay uses the demonstration to bias the start distri-
bution towards a more realistic one, thus increasing the
training time spent in worthwhile parts of the state space.
Moreover, their approach requires the environment to be re-
versible, which may not be the case in many scenarios of in-

terest, including popular research gaming environments like
Starcraft. Finally, their method only applies to tasks with
a unique fixed goal state, while our technique could be ap-
plied in settings with multiple non-stationary targets such as
multi-agent learning games.

To improve sample efficiency of RL algorithms, (Goyal et
al. 2018) and (Edwards, Downs, and Davidson 2018) simul-
taneously proposed the use of a learned backtracking model
to generate traces that lead to high value states. In order to
effectively use the traces, their methods rely on either having
the agent visit high reward states or learning a model of the
environment capable of generating the states, both of which
are challenging in environments in which the dynamics near
starting states are very different from those near goal states.

Finally, (Ivanovic et al. 2018) use a known (approximate)
dynamics model to create a backwards curriculum for con-
tinuous control tasks. Their approach requires a physical
prior which is not always available and often not applicable
in multi-agent scenarios. In contrast, Backplay automati-
cally creates a curriculum fit for any resettable environment
with accompanying demonstrations.

3 Backplay
Consider the standard formalization of a single agent
Markov Decision Process (MDP) defined by a set of states
S, a set of actions A, and a transition function T : S ×
A → S which gives the probability distribution of the
next state given a current state and action. If P(A) de-
notes the space of probability distributions over actions, the
agent chooses actions by sampling from a stochastic policy
π : S → P(A), and receives reward r : S × A → R
at every time step. The agent’s goal is to construct a pol-
icy which minimizes its discounted expected return Rt =
E
[∑∞

k=0 γ
krt+k+1

]
where rt is the reward at time t and

γ ∈ [0, 1] is the discount factor, and the expectation is taken
with respect to both the policy and the environment.

The final component of an MDP is the distribution of
initial starting states s0. The key idea in Backplay is that
we do not initialize the MDP in only a fixed s0. Instead,
we assume access to a demonstration which reaches a se-
quence of states {sd0, sd1, . . . , sdT }. For each training episode,
we uniformly sample starting states from the sub-sequence
{sdT−k, sdT−k+1, . . . , s

d
T−j} for some window [j, k]. Note

that this training regime requires the ability to reset the en-
vironment to any state. As training continues, we ‘advance’
the window according to a curriculum by increasing the val-
ues of j and k until we are training on the initial state in
every episode (j = k = T). In this manner, our hyper-
parameters for Backplay are the windows and the training
epochs at which we advance them.

3.1 Intuition
We first provide intuition regarding the conditions under
which Backplay can improve sample-efficiency or lead to
a better policy than that of the demonstrator. Figure 2 con-
tains three toy grid worlds. In each of them, the agent begins
at s0, receives a reward of 1 iff it navigates to the goal s∗,

Demonstration
s∗

s0

(a) Backplay Helps

Demonstration
s∗

s0

(b) Backplay Helps

Demonstration
s∗

s0

(c) Backplay Hinders

Figure 2. Three environments illustrating when Backplay can help or hinder learning an optimal policy. Backplay is expected to learn faster
than standard RL on the first and second mazes, but perform worse on the third maze.

and incurs a per step cost. Thus, the optimal strategy is to
reach the goal in as few steps as possible.

The left grid world shows a sparse reward environment
in which Backplay can decrease the requisite training time
compared to vanilla RL. Using the sub-optimal demonstra-
tion will position the Backplay agent close to high value
states. In addition, the agent will likely surpass the expert
policy because, unlike in behavioral cloning approaches,
Backplay does not encourage the agent to imitate expert ac-
tions. Rather, the curriculum forces the agent to first explore
states with large associated value and consequently, estimat-
ing the value function suffers less from the curse of dimen-
sionality.

The middle grid illustrates a maze with bottlenecks.
Backplay will vastly decrease the exploration time because
the agent will be less prone to exploring the errant right side
chamber where it can get lost if it traverses to the right in-
stead of going up to the goal.

On the right side grid, while Backplay is still likely to sur-
pass its demonstrator, it will have trouble doing better than
vanilla RL because the latter will always start in s0 and con-
sequently will be more likely to stumble upon the optimal
solution of going up and then right. In contrast, Backplay
will spend the dominant amount of its early training starting
in states in the sub-optimal demonstration.

3.2 Analysis
Next, we formally explore the conditions under which Back-
play can improve the sample-efficiency of RL training.
More specifically, we will derive an estimate for the sam-
ple complexity of a Q-learning agent trained with Backplay
in a sparse reward navigation environment and we will show
that it is significantly better than that of standard RL. Note
that we simplify to a setup using a single starting state for
each training stage instead of sampling from a window. In
the notation from Section 3, k = j. One can verify that
the general setup where k > j is a more favorable regime,
and therefore our approach provides an upper bound on the
sample complexity.

Consider a connected, undirected graph G = (V,E).
An agent is placed at a fixed node v0 ∈ V and moves to
neighboring nodes at a negative reward of −1 for each step.
Its goal is to reach a target node v∗ ∈ V , terminating the
episode. This corresponds to an MDP M = (S,A, P,R)

with state space S ∼ V , action space A ∼ E, determin-
istic transition kernel corresponding to P (st+1 = j | st =
i, at = (l, k)) = δ(j = k)δ(l = i) + δ(j = i)δ(l 6= i) and
uniform rewardR(st, at) = −1 for st+1 6= v∗. Assume that
π is a fixed policy onM, such that the underlying Markov
chain is irreducible and aperiodic:

Kπ(s′, s) =
∑
a∈A

P (s′ = j | s0 = s, a0 = a)π(a|s0 = s)

Kπ has a single absorbing state at s = s∗ := v∗. Our goal
is to estimate the value function of this policy, equivalent
to the expected first-passage time of the Markov chain Kπ

from s0 = s to s∗ - Vπ(s) = Eτ(s, s∗), or

Emin{j ≥ 0 ; s.t. sj = s∗, s0 = s, si+1 ∼ Kπ(·, si)} .

We make a simplifying assumption that the function ap-
proximation is completely determined by projecting this
chain into the process zt = distG(st, s∗) ∈ {0, 1, . . . ,M},
with M = diam(G). That is, we consider a latent variable
at each state indicating its distance to the target. Since zt’s
transition probabilities are not a function of only zt, it is
in general not Markovian. Its Markov approximation z̄t is
defined as the Markov chain K given by the expected tran-
sition probabilities

Pr(z̄t+1 = l − 1|z̄t = l) := Prµ(zt+1 = l − 1 | zt = l)

Pr(z̄t+1 = l|z̄t = l) := Prµ(zt+1 = l | zt = l)

Define αl = Prµ(zt+1 = l − 1 | zt = l) and βl =
Prµ(zt+1 = l | zt = l) → Pr(z̄t+1 = l + 1|z̄t = l) =
1 − αl − βl = Prµ(zt+1 = l + 1 | zt = l) under the sta-
tionary distribution µ of Kπ . In other words, we create an
equivalence class given by the level sets of the optimal value
function Vopt(s), the shortest-path distance in G.

The analysis of Backplay in the 1D chain K is now
tractable. Given a demonstration d = (d0 = s0, . . . , dL =
s∗), dl ∈ S, we sample it using a step size m > 0 (such
that j = 0 mod m, where j is defined in Section 3) to obtain
d̄l := distG(dL−ml, s∗), l = 0, 1, . . . , Lm , which satisfies
d̄l ≤ lm for all l. For fixed l, we initialize the chain K at
d̄l: z̄0 = d̄l. Since Pr(z̄m = 0) ≥

∏m−1
j=0 αj := γ0,m,

after O(γ−10,m) trials of length ≤ M , we will reach the ab-
sorbing state and finally have a signal-carrying update for
the Q-function at the originating state.

We can consequently merge that state into the absorb-
ing state and reduce the length of the chain by one. Re-
peat the argument m times so that after O(

∑m
j=0 γ

−1
j,m) =

O(mγ−10,m) trials, the Q-function is updated at z̄0. Repeat
at Backplay steps lm, l = 1, . . . Mm , and we reach a sample
complexity of

Tm =

M
m−1∑
k=0

O

M m∑
j=0

γ−1km,(k+1)m−j

 .

In the case where αl = α for all l, we obtain
γ−1km,(k+1)m−j = γ0,m−j = α−m+j and therefore Tm =

O
(
M2(1−αm+1)
m(1−α) α−m

)
, where the important term is the

rate M2

m α−m.
On the other hand, (Hong and Zhou 2017) shows that the

first-passage time τ(0,M) in a skip-free finite Markov chain
of M states with a single absorbing state is a random vari-
able whose moment-generating function ϕ(s) = Esτ(s,s∗)
is given by

ϕ(s) =

M∏
j=1

(1− λj)s
1− λjs

, (1)

where λ1, . . . , λM are the non-unit eigenvalues of the transi-
tion probability matrix. It follows that Eτ(0,M) = ϕ′(1) =∑M
j=1

1
1−λj

≈ (1− λ1)−1, which corresponds to the recip-
rocal spectral gap. (Chen and Saloff-Coste 2013) further
shows that this reciprocal spectral gap is Ω(α−M/2) in our
case, and therefore the model without Backplay will on av-
erage take TM = Ω(α−M/2) trials to reach the absorbing
state and receive information.

Hence, in this simple birth-death scenario, the sample
complexity gains are exponential in the diameter of the
graph - O(M

2

m α−m) vs Ω(Mα−M/2).
We can analyze the uniform strategy similarly. The prob-

ability that a trajectory initialized at one of the uniform sam-
ples will reach the absorbing state is lower bounded by

M∑
j=1

αjP (z̄0 = j) =
1

M

M∑
j=1

αj =
α− αM+1

M(1− α)
, (2)

which is approximately α
M when α is small, leading to a

sample complexity of O(M2α−1) to update the value func-
tion at the originating state, and O(M3α−1) at the starting
state. Comparing this rate to Backplay with m = 1, observe
that the uniform strategy is slower by a factor of M (and
one can verify that the same is true for generic step size m
by imagining that we first sampled a window of size m and
then sub-sampled our state from that window), suggesting
that it loses efficiency on environments with large diameter.

This analysis relies on the projection into the 1D skip-
free process given by the distance to the target and makes
two strong simplifying assumptions. First, we assume that
the level sets of our estimated value functions correspond to
the level sets of the true value function, ie, for all θ, Vθ(s) =
Vθ(s

′) whenever distG(s′, s∗) = distG(s, s∗). Second, we

assume that the projected process is well described by its
Markovian approximation. The first assumption is related to
the ability of our function approximator to generalize from
visited states s to unvisited states s′ such that distG(s′, s∗) =
distG(s, s∗), and is generally violated unless one leverages
prior information. The second assumption has an impact
on the derived bounds and could be relaxed by replacing
conditional probabilities with infima over the level sets.

As Figure 2 suggests, Backplay is not a universal strat-
egy to improve sample complexity. Even in the navigation
setting, if the task randomizes the initial state s0, a sin-
gle demonstration trajectory does not generally improve the
coverage of the state-space outside an exponentially small
region around said trajectory. For example, imagine a bi-
nary tree and a navigation task that starts at a random leaf
and needs to reach the root. A single expert trajectory will
be disjoint from half of the state space (because the root is
absorbing), thus providing no sample complexity gains on
average.

The preceding analysis suggests that a full characteriza-
tion of Backplay is a fruitful direction for reinforcement and
imitation learning theory, albeit beyond the scope of this pa-
per.

4 Experiments
We now move to evaluating Backplay empirically in two
environments: a grid world maze and a four-player free-for-
all game. The questions we study across both environments
are the following:

• Is Backplay more efficient than training an RL agent from
scratch?

• How does the quality of the given demonstration affect
the effectiveness of Backplay?

• Can Backplay agents surpass the demonstrator when it is
non-optimal?

• Can Backplay agents generalize?

4.1 Training Details

We compare several training regimes. The first is Back-
play, which uses the Backplay algorithm corresponding to
a particular sequence of windows and epochs as specified in
A.1. The second, Standard is vanilla model-free RL with
the agent always starting at the initial state s0. The last,
Uniform, is an ablation that considers how important the
curriculum aspect of Backplay is, by sampling initial states
randomly from the entire demonstration.

In all these regimes, we use Proximal Policy Optimization
(PPO, (Schulman et al. 2017)) to train an agent with policy
and value functions parameterized by convolutional neural
networks. Training details and network architectures for all
environments can be found in A.3 and A.5, while A.8 con-
tains empirical observations for using Backplay in practice.
We report the mean and standard deviation of the success
rate across five random seeds.

Algorithm Demonstrator % Optimal % 0-5 Optimal Avg Suboptimality Std Suboptimality
Standard None 0 0 N/A N/A
Uniform Optimal 27 91 8.26 32.92
Uniform 5-Optimal 51 98 2.04 17.39
Uniform 10-Optimal 49 98 2.04 16.79
Backplay Optimal 31 100 0.64 4.96
Backplay 5-Optimal 37 94 7.94 33.35
Backplay 10-Optimal 54 99 0.37 3.49

Table 1: Results after 2000 epochs on 100 mazes. N-optimal uses demonstrations N steps longer than the shortest path. From
left to right, the table shows: the percentage of mazes on which the agent optimally reaches the goal, percentage on which it
reaches in at most five steps more than optimal, and the average and standard deviation of extra steps over optimal. Standard
has failed to learn, while both Backplay and Uniform succeed on almost all mazes and, importantly, can outperform the experts’
demonstrations. Results were consistent across all seeds. For more details, see A.2.

(a) Optimal Demonstrations (b) Demos Five > Optimal (c) Demos Ten > Optimal

Figure 3. Maze learning curves when training with optimal demonstrations, demonstrations that are five longer than optimal, and demon-
strations that are ten longer than optimal. In all cases, the Backplay models first encounter the initial state at epoch 1400 and it becomes the
default starting state at epoch 1750. Observe that in all circumstances Backplay significantly decreases the time to learn a strong policy.

4.2 Maze
We generated mazes of size 24 × 24 with 120 randomly
placed walls, a random start position, and a random goal po-
sition. We then used A* to generate trajectories. These in-
cluded both Optimal demonstrations (true shortest path) and
N-Optimal demonstrations (N steps longer than the shortest
path). More details on this setup are given in A.2.

Our model receives as input four 24 × 24 binary maps.
They contain ones at the positions of, respectively, the agent,
the goal, passages, and walls. It outputs one of five options:
Pass, Up, Down, Left, or Right. The game ends when the
agent has reached its goal or after a maximum of 200 steps,
whereupon the agent receives reward of +1 if it reaches the
goal and a per step penalty of -0.03.

Table 1 shows that Standard has immense trouble learn-
ing in this sparse reward environment while both Backplay
and Uniform find an optimal path approximately 30-50% of
the time and a path within five of the optimal path almost
always. Thus, in this environment, demonstrations of even
sub-optimal experts are extremely useful, while the curricu-
lum created by Backplay is not necessary. That curriculum
does, however, aid convergence speed (3). We will see in
the next section that the curriculum becomes vital as the en-
vironment increases in complexity.

Finally, we evaluated the degree to which Backplay gen-
eralizes to unseen environment configurations by testing the
agent on ten new mazes and found that none of our training
regimes were successfully able to navigate them. We also

tried generating new mazes for each episode of training and
found that the models failed to learn at all even in training.
These experiments suggest that in this environment, Back-
play does not aid generalization.

4.3 Pommerman
Pommerman is a stochastic environment (Resnick et al.
2018) based on the classic console game Bomberman and
will be a competition at NIPS 2018. It is played on an 11x11
grid where on every turn, each of four agents either move in
a cardinal direction, pass, or lay a bomb. The agents be-
gin fenced in their own area by two different types of walls
- rigid and wooden. The former are indestructible while
bombs destroy the latter. Upon blowing up wooden walls,
there is a uniform chance at yielding one of three power-
ups: an extra bomb, an extra unit of range in the agent’s
bombs, or the ability to kick bombs. The maps are designed
randomly, albeit there is always a guaranteed path between
any two agents. For a visual aid of the start state, see Figure
6 in A.4.

In our experiments, we use the purely adversarial Free-
For-All (FFA) environment. This environment is introduced
in (MultiAgentLearning 2018; Resnick et al. 2018) and we
point the reader there for more details. The winner of the
game is the last agent standing. It is played from the per-
spective of one agent whose starting position is uniformly
picked among the four. The three opponents are copies of
the winner of the June 3rd 2018 FFA competition, a stochas-

(a) Backplay Winner (b) Backplay Runner Up

(c) Standard & Uniform Winner (d) Standard & Uniform Runner Up

Figure 4. Pommerman results when training on four maps. a and c are trained from the perspective of the winning agent, while b and d
are from that of the runner up. Dense is with reward shaping and Sparse is without. Performance is shown for the training episodes. The
Backplay models first encounter the initial state at epoch 250 (vertical red line) starts training only from the initial state from epoch 300
onward (vertical green line). While Standard achieves notable results only in the dense setting, Backplay achieves strong performance in both
sparse and dense setups, and Uniform fails to learn a worthwhile policy in either. Finally, there is a clear difference in performance when
following the winner versus the runner up, although the maps are the same.

Figure 5. Pommerman results when training on a hundred maps from the winner’s perspective. Performance is shown on episodes with the
agent always starting in the initial state. Backplay first encounters the initial state at epoch 340 and defaults to it for half of the environments
at epoch 425. Observe that Backplay performs significantly better than Standard and Uniform in both Dense and Sparse settings.

tic agent using a Finite State Machine Tree-Search approach
(FSMTS, (Zhou et al. 2018)). We also make use of the
FSMTS agent as the ‘expert’ in the Backplay demonstra-
tions.

The observation state is represented by 19 11x11 maps,
and we feed the concatenated last two states to our agent as
input. A detailed description of this mapping is given in A.4.
The game ends either when the learning agent wins or dies,
or when 800 steps have passed. Upon game end, the agent
receives +1 for winning and −1 otherwise (Sparse). We
also run experiments where the agent additionally receives
+0.1 whenever it collects an item (Dense).

Our first two scenarios draw maps from four fixed Pom-
merman board configurations. We independently consider
two Backplay trajectories, one following the winner and one
following the runner up. Figure 4 shows that Backplay
can defeat the FSMTS agents in both sparse and dense
settings, while Standard requires dense rewards to win.
Visit this link for an example gif of our trained Backplay
agent (top left - red). Note that the agent learned to ‘throw’
bombs, a unique playing style that no prior Pommerman
competitor had exhibited, including the FSMTS demonstra-
tor.

We then consider a harder setup where the board is drawn
from a hundred maps. Figure 5 shows that Backplay
achieves high success rates while Standard and Uniform
fail to learn anything of substance. Moreover, Backplay
agents win half of the games at rates > 80% (Table 5 in
A.7).

Unlike on the maze, Backplay can, to some extent, gen-
eralize to unseen Pommerman maps. Backplay wins 416 /
1000 games on a held out test set of ten new maps, with
the following success rates on each of the ten map: 85.3%,
84.1%, 81.6%, 79.5%, 52.4%, 47.4%, 38.1%, 22.6%, 20%,
and 18.3%.

5 Conclusion
We have introduced and analyzed Backplay, a technique
which improves the sample efficiency of model-free RL
by constructing a curriculum around a demonstration. We
showed that Backplay agents can learn in complex environ-
ments where standard model-free RL fails, and that they can
outperform the ‘expert’ whose trajectories they use while
training. We also presented a theoretical analysis of its sam-
ple complexity in a simplified setting.

An important future direction is combining Backplay
with more complex and complementary methods such as
Monte Carlo Tree Search (MCTS, (Browne et al. 2012;
Vodopivec, Samothrakis, and Šter 2017)). There are many
potential ways to do so, for example by using Backplay to
warm-start MCTS.

Another direction is to use Backplay to accelerate self-
play learning in zero-sum games. However, special care
needs to be taken to avoid policy correlation during train-
ing (Lanctot et al. 2017) and thus to make sure that learned
strategies are safe and not exploitable (Brown and Sandholm
2017).

A third direction is towards non-zero sum games. It is
well known that standard independent multi-agent learning

does not produce agents that are able to cooperate in social
dilemmas (Leibo et al. 2017; Lerer and Peysakhovich 2017;
Peysakhovich and Lerer 2017; Foerster et al. 2017) or risky
coordination games (Yoshida, Dolan, and Friston 2008;
Peysakhovich and Lerer 2018). In contrast, humans are
much better at finding these coordinating and cooperating
equilibria (Bó 2005; Kleiman-Weiner et al. 2016). Thus,
we conjecture that human demonstrations can be combined
with Backplay to construct agents that perform well in such
situations.

Other future priorities are to gain a better understanding
of when Backplay works well, when it fails, and how we
can make the procedure more efficient. Could we speed up
Backplay by ascertaining confidence estimates of state val-
ues? Do the gains in sample complexity come from value
estimation like our analysis suggests, from policy iteration,
or from both? Is there an ideal rate for advancing the cur-
riculum window and is there a better approach than a hand-
tuned schedule?

References
[Aytar et al. 2018] Aytar, Y.; Pfaff, T.; Budden, D.; Paine,
T. L.; Wang, Z.; and de Freitas, N. 2018. Playing hard
exploration games by watching youtube. arXiv preprint
arXiv:1805.11592.

[Bengio et al. 2009] Bengio, Y.; Louradour, J.; Collobert, R.;
and Weston, J. 2009. Curriculum learning. In Proceed-
ings of the 26th annual international conference on machine
learning, 41–48. ACM.

[Bó 2005] Bó, P. D. 2005. Cooperation under the shadow of
the future: experimental evidence from infinitely repeated
games. American economic review 95(5):1591–1604.

[Brown and Sandholm 2017] Brown, N., and Sandholm, T.
2017. Safe and nested subgame solving for imperfect-
information games. In Advances in Neural Information Pro-
cessing Systems, 689–699.

[Browne et al. 2012] Browne, C. B.; Powley, E.; White-
house, D.; Lucas, S. M.; Cowling, P. I.; Rohlfshagen, P.;
Tavener, S.; Perez, D.; Samothrakis, S.; and Colton, S. 2012.
A survey of monte carlo tree search methods. IEEE Trans-
actions on Computational Intelligence and AI in games
4(1):1–43.

[Chen and Saloff-Coste 2013] Chen, G.-Y., and Saloff-
Coste, L. 2013. On the mixing time and spectral gap for
birth and death chains. arXiv preprint arXiv:1304.4346.

[Clark and Amodei 2016] Clark, J., and Amodei, D. 2016.
Faulty reward functions in the wild. https://blog.
openai.com/faulty-reward-functions/.

[Das et al. 2017a] Das, A.; Datta, S.; Gkioxari, G.; Lee, S.;
Parikh, D.; and Batra, D. 2017a. Embodied question an-
swering. CoRR abs/1711.11543.

[Das et al. 2017b] Das, A.; Kottur, S.; Moura, J. M. F.; Lee,
S.; and Batra, D. 2017b. Learning cooperative visual
dialog agents with deep reinforcement learning. CoRR
abs/1703.06585.

[Daumé, Langford, and Marcu 2009] Daumé, H.; Langford,

https://drive.google.com/file/d/1FZ8cHAypl2EkkRTie0xSQdj8zVhHDofT/view?usp=sharing
https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/

J.; and Marcu, D. 2009. Search-based structured prediction.
Machine learning 75(3):297–325.

[Edwards, Downs, and Davidson 2018] Edwards, A. D.;
Downs, L.; and Davidson, J. C. 2018. Forward-backward
reinforcement learning. arXiv preprint arXiv:1803.10227.

[Florensa et al. 2017] Florensa, C.; Held, D.; Wulfmeier, M.;
and Abbeel, P. 2017. Reverse curriculum generation for
reinforcement learning. arXiv preprint arXiv:1707.05300.

[Foerster et al. 2017] Foerster, J. N.; Chen, R. Y.; Al-
Shedivat, M.; Whiteson, S.; Abbeel, P.; and Mordatch, I.
2017. Learning with opponent-learning awareness. arXiv
preprint arXiv:1709.04326.

[Gao et al. 2018] Gao, Y.; Lin, J.; Yu, F.; Levine, S.; Dar-
rell, T.; et al. 2018. Reinforcement learning from imperfect
demonstrations. arXiv preprint arXiv:1802.05313.

[Goyal et al. 2018] Goyal, A.; Brakel, P.; Fedus, W.; Lilli-
crap, T.; Levine, S.; Larochelle, H.; and Bengio, Y. 2018.
Recall traces: Backtracking models for efficient reinforce-
ment learning. arXiv preprint arXiv:1804.00379.

[Hester et al. 2017] Hester, T.; Vecerik, M.; Pietquin, O.;
Lanctot, M.; Schaul, T.; Piot, B.; Horgan, D.; Quan,
J.; Sendonaris, A.; Dulac-Arnold, G.; et al. 2017.
Deep q-learning from demonstrations. arXiv preprint
arXiv:1704.03732.

[Ho and Ermon 2016] Ho, J., and Ermon, S. 2016. Gener-
ative adversarial imitation learning. In Advances in Neural
Information Processing Systems, 4565–4573.

[Hong and Zhou 2017] Hong, W., and Zhou, K. 2017. A
note on the passage time of finite-state markov chains. Com-
munications in Statistics-Theory and Methods 46(1):438–
445.

[Hosu and Rebedea 2016] Hosu, I.-A., and Rebedea, T.
2016. Playing atari games with deep reinforcement
learning and human checkpoint replay. arXiv preprint
arXiv:1607.05077.

[Ivanovic et al. 2018] Ivanovic, B.; Harrison, J.; Sharma, A.;
Chen, M.; and Pavone, M. 2018. Barc: Backward reacha-
bility curriculum for robotic reinforcement learning. arXiv
preprint arXiv:1806.06161.

[Kakade and Langford 2002] Kakade, S., and Langford, J.
2002. Approximately optimal approximate reinforcement
learning. In Sammut, C., and Hoffmann, A. G., eds., ICML,
267–274. Morgan Kaufmann.

[Kleiman-Weiner et al. 2016] Kleiman-Weiner, M.; Ho,
M. K.; Austerweil, J. L.; Littman, M. L.; and Tenenbaum,
J. B. 2016. Coordinate to cooperate or compete: abstract
goals and joint intentions in social interaction. In COGSCI.

[Lanctot et al. 2017] Lanctot, M.; Zambaldi, V.; Gruslys, A.;
Lazaridou, A.; Perolat, J.; Silver, D.; Graepel, T.; et al.
2017. A unified game-theoretic approach to multiagent re-
inforcement learning. In Advances in Neural Information
Processing Systems, 4190–4203.

[Laskey et al. 2016] Laskey, M.; Staszak, S.; Hsieh, W. Y.-
S.; Mahler, J.; Pokorny, F. T.; Dragan, A. D.; and Goldberg,
K. 2016. Shiv: Reducing supervisor burden in dagger using
support vectors for efficient learning from demonstrations in

high dimensional state spaces. In Robotics and Automation
(ICRA), 2016 IEEE International Conference on, 462–469.
IEEE.

[Leibo et al. 2017] Leibo, J. Z.; Zambaldi, V.; Lanctot, M.;
Marecki, J.; and Graepel, T. 2017. Multi-agent reinforce-
ment learning in sequential social dilemmas. In Proceedings
of the 16th Conference on Autonomous Agents and MultiA-
gent Systems, 464–473. International Foundation for Au-
tonomous Agents and Multiagent Systems.

[Lerer and Peysakhovich 2017] Lerer, A., and
Peysakhovich, A. 2017. Maintaining cooperation in
complex social dilemmas using deep reinforcement
learning. arXiv preprint arXiv:1707.01068.

[Lerer and Peysakhovich 2018] Lerer, A., and
Peysakhovich, A. 2018. Learning social conventions
in markov games. arXiv preprint arXiv:1806.10071.

[Levine et al. 2016] Levine, S.; Finn, C.; Darrell, T.; and
Abbeel, P. 2016. End-to-end training of deep visuomotor
policies. Journal of Machine Learning Research 17(39):1–
40.

[Li et al. 2016] Li, J.; Monroe, W.; Ritter, A.; Galley, M.;
Gao, J.; and Jurafsky, D. 2016. Deep reinforcement learning
for dialogue generation. CoRR abs/1606.01541.

[McAleer et al. 2018] McAleer, S.; Agostinelli, F.;
Shmakov, A.; and Baldi, P. 2018. Solving the ru-
bik’s cube without human knowledge. arXiv preprint
arXiv:1805.07470.

[Moravcík et al. 2017] Moravcík, M.; Schmid, M.; Burch,
N.; Lisý, V.; Morrill, D.; Bard, N.; Davis, T.; Waugh, K.;
Johanson, M.; and Bowling, M. H. 2017. Deepstack:
Expert-level artificial intelligence in no-limit poker. CoRR
abs/1701.01724.

[MultiAgentLearning 2018] MultiAgentLearning.
2018. Pommerman. https://github.com/
MultiAgentLearning/playground.

[Nair et al. 2017] Nair, A.; McGrew, B.; Andrychowicz, M.;
Zaremba, W.; and Abbeel, P. 2017. Overcoming explo-
ration in reinforcement learning with demonstrations. arXiv
preprint arXiv:1709.10089.

[Ng, Harada, and Russell 1999] Ng, A. Y.; Harada, D.; and
Russell, S. 1999. Policy invariance under reward trans-
formations: Theory and application to reward shaping. In
ICML, volume 99, 278–287.

[Peng et al. 2018] Peng, X. B.; Abbeel, P.; Levine, S.; and
van de Panne, M. 2018. Deepmimic: Example-guided deep
reinforcement learning of physics-based character skills.
arXiv preprint arXiv:1804.02717.

[Peysakhovich and Lerer 2017] Peysakhovich, A., and
Lerer, A. 2017. Consequentialist conditional cooperation in
social dilemmas with imperfect information. arXiv preprint
arXiv:1710.06975.

[Peysakhovich and Lerer 2018] Peysakhovich, A., and
Lerer, A. 2018. Prosocial learning agents solve generalized
stag hunts better than selfish ones. Proceedings of the
17th Conference on Autonomous Agents and MultiAgent
Systems.

https://github.com/MultiAgentLearning/playground
https://github.com/MultiAgentLearning/playground

[Ranzato et al. 2015] Ranzato, M.; Chopra, S.; Auli, M.; and
Zaremba, W. 2015. Sequence level training with recurrent
neural networks. CoRR abs/1511.06732.

[Resnick et al. 2018] Resnick, C.; Eldridge, W.; Ha, D.;
Britz, D.; Foerster, J.; Togelius, J.; Cho, K.; and Bruna, J.
2018. Pommerman: A multi-agent playground.

[Ross, Gordon, and Bagnell 2011] Ross, S.; Gordon, G.; and
Bagnell, D. 2011. A reduction of imitation learning and
structured prediction to no-regret online learning. In Pro-
ceedings of the fourteenth international conference on arti-
ficial intelligence and statistics, 627–635.

[Salimans and Chen 2018] Salimans, T., and Chen, R.
2018. Learning montezuma’s revenge from a sin-
gle demonstration. https://blog.openai.com/
learning-montezumas-revenge-from-a-single-demonstration/.
Accessed: 2018-07-12.

[Schulman et al. 2017] Schulman, J.; Wolski, F.; Dhariwal,
P.; Radford, A.; and Klimov, O. 2017. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

[Silver et al. 2016] Silver, D.; Huang, A.; Maddison, C. J.;
Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.;
Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman,
S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.;
Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.; and
Hassabis, D. 2016. Mastering the game of Go with deep
neural networks and tree search. Nature 529(7587):484–
489.

[Silver et al. 2017] Silver, D.; Hubert, T.; Schrittwieser, J.;
Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.;
Kumaran, D.; Graepel, T.; Lillicrap, T. P.; Simonyan, K.;
and Hassabis, D. 2017. Mastering chess and shogi by self-
play with a general reinforcement learning algorithm. CoRR
abs/1712.01815.

[Vodopivec, Samothrakis, and Šter 2017] Vodopivec, T.;
Samothrakis, S.; and Šter, B. 2017. On monte carlo
tree search and reinforcement learning. J. Artif. Int. Res.
60(1):881–936.

[Yoshida, Dolan, and Friston 2008] Yoshida, W.; Dolan,
R. J.; and Friston, K. J. 2008. Game theory of mind. PLoS
computational biology 4(12):e1000254.

[Zhang and Cho 2016] Zhang, J., and Cho, K. 2016. Query-
efficient imitation learning for end-to-end autonomous driv-
ing. arXiv preprint arXiv:1605.06450.

[Zhou et al. 2018] Zhou, H.; Gong, Y.; Mugrai, L.; Khalifa,
A.; Nealen, A.; and Togelius, J. 2018. A hybrid search agent
in pommerman. In Proceedings of the 13th International
Conference on the Foundations of Digital Games, FDG ’18,
46:1–46:4. New York, NY, USA: ACM.

[Zhu et al. 2018] Zhu, Y.; Wang, Z.; Merel, J.; Rusu, A. A.;
Erez, T.; Cabi, S.; Tunyasuvunakool, S.; Kramár, J.; Had-
sell, R.; de Freitas, N.; and Heess, N. 2018. Reinforcement
and imitation learning for diverse visuomotor skills. CoRR
abs/1802.09564.

A Appendix
A.1 Backplay Hyperparameters
As mentioned in Section 3, the Backplay hyperparameters
are the window bounds and the frequency with which they
are shifted. When we get to a training epoch represented
in the sequence of epochs, we advance to the corresponding
value in the sequence of windows. For example, consider
training an agent with Backplay in the Maze environment
(Table 2) and assume we are at epoch 1000. We will select a
maze at random, an N ∈ [16, 32), and start the agent in that
game N steps from the end. Whenever a pair is chosen such
that the game’s length is smaller than N , we use the initial
state.

There isn’t any downside to having the model continue
training in a window for too long, albeit the ideal is that this
method increases the speed of training. There is however a
downside to advancing the window too quickly. A scenario
common to effective training is improving success curves
punctured by step drops whenever the window advances.

Starting at training epoch Uniform window
0 [0, 4)

350 [4, 8)
700 [8, 16)

1050 [16, 32)
1400 [32, 64)
1750 [64, 64)

Table 2: Backplay hyperparameters for Maze.

Starting at training epoch Uniform window
0 [0, 32)
50 [24, 64)

100 [56, 128)
150 [120, 256)
200 [248, 512)
250 [504, 800)
300 [800, 800]

Table 3: Backplay hyperparameters for Pommerman 4
maps.

Starting at training epoch Uniform window
0 [0, 32)
85 [24, 64)

170 [56, 128)
255 [120, 256)
340 [248, 512)
425 [504, 800)
510 [800, 800]

Table 4: Backplay hyperparameters for Pommerman 100
maps.

A.2 Maze: Demonstration Details
For N-Optimal demonstrations, we used a noisy A* where
at each step, we follow A* with probability p or choose a
random action otherwise. We considered N ∈ {5, 10}. In

https://blog.openai.com/learning-montezumas-revenge-from-a-single-demonstration/
https://blog.openai.com/learning-montezumas-revenge-from-a-single-demonstration/

all scenarios, we only selected maps in which there exists
at least a path from the the initial state to the goal state, we
filtered any path that was less than 35 in length and stopped
when we found a hundred valid training games. Note that
we held the demonstration length invariant rather than the
optimal length (i.e. all N-optimal paths have the same length
regardless of N, which means that the length of the opti-
mal path of a N-optimal demonstration decreases with N).
This could explain why the results in Table 1 (column 1)
show that Backplay’s performance increases with N (since
the larger the N, the smaller the true optimal path, so the
easier it is to learn an optimal policy for that maze configu-
ration).

A.3 Maze: Network Architecture and Training
Parameters

We use a standard deep RL setup for our agents. The agent’s
policy and value functions are parameterized by a convolu-
tional neural network with 2 layers each of 32 output chan-
nels, followed by two linear layers with 128 dimensions.
Each of the layers are followed by ReLU activations. This
body then feeds two heads, a scalar value function and a
softmax policy function over the five actions. All of the
CNN kernels are 3x3 with stride and padding of one.

We train our agent using Proximal Policy Optimization
(PPO, (Schulman et al. 2017)) with γ = 0.99, learning
rate 1× 10−3, batch size 102400, 60 parallel workers, clip-
ping parameter 0.2, generalized advantage estimation with
τ = 0.95, entropy coefficient 0.01, value loss coefficient
0.5, mini-batch size 5120, horizon 1707, and 4 PPO updates
at each iteration. The number of interactions per epoch is
equal to the batch size (102400).

A.4 Pommerman: Observation State

Figure 6. Pommerman start state. Each agent begins in one of four
positions. Yellow squares are wood, brown are rigid, and gray are
passages.

There are 19 feature maps that encompass each observation.
They consist of the following: the agents’ identities and lo-
cations, the locations of the walls, power-ups, and bombs,
the bombs’ blast strengths and remaining life counts, and
the current time step.

The first map contains the integer values of each bomb’s
blast strength at the location of that bomb. The second map
is similar but the integer value is the bomb’s remaining life.
At all other positions, the first two maps are zero. The next
map is binary and contains a single one at the agent’s loca-
tion. If the agent is dead, this map is zero everywhere. The
following two maps are similar. One is full with the agent’s
integer current bomb count, the other with its blast radius.
We then have a full binary map that is one if the agent can
kick and zero otherwise.

The next maps deal with the other agents. The first con-
tains only ones if the agent has a teammate and zeros oth-
erwise. This is useful for building agents that can play both
team and solo matches. If the agent has a teammate, the
next map is binary with a one at the teammate’s location
(and zero if she is not alive). Otherwise, the agent has three
enemies, so the next map contains the position of the en-
emy that started in the diagonally opposed corner from the
agent. The following two maps contain the positions of the
other two enemies, which are present in both solo and team
games.

We then include eight feature maps representing the
respective locations of passages, rigid walls, wooden
walls, flames, extra-bomb power-ups, increase-blast-
strength power-ups, and kicking-ability power-ups. All are
binary with ones at the corresponding locations.

Finally, we include a full map with the float ratio of the
current step to the total number of steps. This information is
useful for distinguishing among observation states that are
seemingly very similar, but in reality are very different be-
cause the game has a fixed ending step where the agent re-
ceives negative reward for not winning.

A.5 Pommerman: Network Architecture and
Training Parameters

We use a similar setup to that used in the Maze game. The
architecture differences are that we have an additional two
convolutional layers at the beginning, use 256 output chan-
nels, and have output dimensions of 1024 and 512, respec-
tively, for the linear layers. This architecture was not tuned
at all during the course of our experiments. Further hyper-
parameter differences are that we used a learning rate of
3 × 10−4 and a gamma of 1.0. These models trained for
72 hours, which is ∼50M frames. 1

1In our early experiments, we also used a batch-size of 5120,
which meant that the sampled transitions were much more corre-
lated. While Backplay would train without any issues in this setup,
Standard would only marginally learn. In an effort to improve our
baselines, we did not explore this further.

A.6 Pommerman: Action Distribution Analysis

(a) Standard Sparse

(b) Backplay Sparse

Figure 7. Typical histograms for how the Pommerman action se-
lections change over time. From left to right are the concatenated
counts of the actions (Pass, Up, Down, Left, Right, Bomb), delin-
eated on the y-axis by the epoch. Note how the Standard agent
learns to not use bombs.

Pommerman can be difficult for reinforcement learning
agents. The agent must learn to effectively wield the bomb
action in order to win against competent opponents. How-
ever, bombs destroy agents indiscriminately, so placing one
without knowing how to retreat often results in negative re-
ward for that agent. Since agents begin in an isolated area,
they are prone to converging to policies which do not use the
bomb action (as seen in the histograms in Figure 7), which
leads them to sub-optimal policies in the long-term.

A.7 Pommerman: Win Rates
Here we show the per-map win rates obtained by the agent
trained with Backlpay on the 100 Pommerman maps.

Win Maps
90% 24
80% 26
70% 6
60% 5
50% 5

Table 5: Aggregate per-map win rates of the model trained
with Backplay on 100 Pommerman maps. The model was
run over 5000 times in total, with at least 32 times on each
of the 100 maps. The Maps column shows the number of
maps on which the Backplay agent had a success rate of at
least the percent in the Win column. Note that this model
has a win rate of > 80% on more than half of the maps and
a win rate of > 50% on all maps.

A.8 Practical Findings
We trained a large number of models through our research
into Backplay. Though these findings are tangential to our

main points (and are mainly qualitative), we list some obser-
vations here that may be helpful for other researchers work-
ing with Backplay.

First, we found that Backplay does not perform well when
the curriculum is advanced too quickly, however it does not
fail when the curriculum is advanced ‘too slowly.’ Thus, re-
searchers interested in using Backplay should err on the side
of advancing the window too slowly rather than too quickly.

Second, we found that Backplay does not need to hit a
high success rate before advancing the starting state window.
Initially, we tried using adaptive approaches that advanced
the window when the agent reached a certain success thresh-
old. This worked but was too slow. Our hypothesis is that
what is more important is that the agent gets sufficiently ex-
posed to enough states to attain a reasonable barometer of
their value rather than that the agent learns a perfectly opti-
mal policy for a particular set of starting states.

Third, Backplay can still recover if success goes to zero.
This surprising and infrequent result occurred at the juncture
where the window moved back to the initial state and even if
the policy’s entropy over actions became maximal. We are
unsure what differentiates these models from the ones that
did not recover.

We also explored using DAgger ((Ross, Gordon, and Bag-
nell 2011)) for training our agent, but found that it achieved
approximately the same win rate (∼ 20%) as what we would
expect when four FSMTS agents played each other (given
that there are also ties).

	Introduction
	Related Work
	Backplay
	Intuition
	Analysis

	Experiments
	Training Details
	Maze
	Pommerman

	Conclusion
	Appendix
	Backplay Hyperparameters
	Maze: Demonstration Details
	Maze: Network Architecture and Training Parameters
	Pommerman: Observation State
	Pommerman: Network Architecture and Training Parameters
	Pommerman: Action Distribution Analysis
	Pommerman: Win Rates
	Practical Findings

